

Wrox’s Visual C#® 2005
Express Edition Starter Kit

F. Scott Barker

01_589555 ffirs.qxd 12/29/05 8:37 PM Page iii

01_589555 ffirs.qxd 12/29/05 8:37 PM Page ii

Wrox’s Visual C#® 2005
Express Edition Starter Kit

01_589555 ffirs.qxd 12/29/05 8:37 PM Page i

01_589555 ffirs.qxd 12/29/05 8:37 PM Page ii

Wrox’s Visual C#® 2005
Express Edition Starter Kit

F. Scott Barker

01_589555 ffirs.qxd 12/29/05 8:37 PM Page iii

Wrox’s Visual C#® 2005 Express Edition Starter Kit
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-7645-8955-3

ISBN-10: 0-7645-8955-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1MA/SZ/RS/QV/IN

Library of Congress Cataloging-in-Publication Data:

Barker, F. Scott.
Wrox’s visual C# 2005 Express edition starter kit / F. Scott Barker.

p. cm.
Includes index.
ISBN-13: 978-0-7645-8955-3 (paper/cd-rom)
ISBN-10: 0-7645-8955-5 (paper/cd-rom)
1. C# (Computer program language) 2. Microsoft Visual BASIC. 3. BASIC (Computer program language)
4. Microsoft .NET. I. Title.
QA76.73.C154B42 2005
005.13’3—dc22

2005012036

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal
Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR
EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE
PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES.
IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON
SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES
ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE
AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS
WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Visual C# is a registered trademark of Microsoft Corporation in the
United States and/or other countries. All other trademarks are the property of their respective owners. Wiley Publishing,
Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

"Microsoft" is a registered trademark of Microsoft Corporation in the United States and/or other countries and is used by
Wiley Publishing, Inc. under license from owner. Wrox’s Visual C#® 2005 Express Edition Starter Kit is an independent publi-
cation not affiliated with Microsoft Corporation.

01_589555 ffirs.qxd 1/5/06 5:48 PM Page iv

www.wiley.com

About the Author
F. Scott Barker has worked as a developer in the database field for over 16 years, and with Visual Basic,
SQL Server, and Microsoft Access for the last 14 years. Scott is a Microsoft MVP and holds a Bachelor of
Science in Computer Science. Scott worked at Microsoft for two years as a member of the Microsoft
Access and FoxPro teams. After leaving Microsoft, he started his own company, Applications Plus, and
continued to consult for them by developing in-house tools. Scott has trained for Application Developers
Training Company and throughout the United States, and is a frequent speaker at Microsoft Conferences
in the United States, Canada, South Asia, and Europe. Through his classes and conferences, Scott has
trained thousands of developers. Scott is a writer for a number of Microsoft Technical magazines, as well
as a columnist for DotNetJunkies, and is the author of a number of books including topics such as ADO.
NET, Visual Basic .NET, and InfoPath 2003.

01_589555 ffirs.qxd 12/29/05 8:37 PM Page v

01_589555 ffirs.qxd 12/29/05 8:37 PM Page vi

Credits
Acquisitions Editor
Katie Mohr

Development Editor
Howard Jones

Technical Editor
Karli Watson

Production Editor
Felicia Robinson

Copy Editor
Joanne Slike

Production Manager
Tim Tate

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Michael Kruzil

Graphics/Production Specialists
Joni Burns
Andrea Dahl
Mary Gillot
Lauren Goddard
Denny Hager
Barbara Moore
Melanee Prendergast
Alicia South

Quality Control Technicians
John Greenough
Leeann Harney

Permissions Editor
Laura Moss

Proofreading and Indexing
TECHBOOKS Production Services

01_589555 ffirs.qxd 12/29/05 8:37 PM Page vii

01_589555 ffirs.qxd 12/29/05 8:37 PM Page viii

Acknowledgements
Anytime you create a book that is shipping day and date with a product such as this one did, the project
is much more complicated because of dealing with beta product right up until the end. There are a num-
ber of people I want to thank who have been working hard with me on this book for Wrox, including the
following people who are at Wrox: Katie Mohr, who is the nicest acquisition editor (sorry Jim) there is.
She can nag you about a deadline, and you thank her. Howard Jones, a great development editor who
would put up with my late night submissions, and still made me look good. Felicia Robinson, the pro-
duction editor who came in late in the process when we were short on patience, and made things easy
for us.

I also want to thank Karli Watson, for taking the time to tech edit my book when I know he is busy with
so much of his own work. I am honored to have you work on this book Karli.

Many thanks to Dan Fernandez, who is on the Microsoft C# Express team and Suzanna Moran, my MVP
lead at Microsoft, for answering my many questions and making sure I had what I need to get this book
done. Dan, you have a great amount of patience, and Suzanna, you rock when it comes to getting me
connected with the right people.

As usual, my family has put up with me writing yet another book: Chris 17, Kari Anne 15, Nichole 12,
David 10, Joseph 4, and my awesome wife Diana.

01_589555 ffirs.qxd 12/29/05 8:37 PM Page ix

01_589555 ffirs.qxd 12/29/05 8:37 PM Page x

Dedication
To my beautiful and brilliant wife and friend, Diana. Besides being a strong woman of God who also
demonstrates her belief in me every day, I can’t think of anyone I would rather have by my side for the
rest of my life, to guide my kids, and share many beautiful sunsets with.

01_589555 ffirs.qxd 12/29/05 8:37 PM Page xi

01_589555 ffirs.qxd 12/29/05 8:37 PM Page xii

Contents

About the Author v
Acknowledgments ix
Introduction xix

Part I: Introduction and Concepts 1

Chapter 1: Starting Strong with Visual C# 2005 Express Edition 3

What Is Microsoft Visual C# 2005 Express? 4
The Differences between C# and C# Express 4
Members of the Express Series 4

Overview of C# Express Development Environment 9
What Is the IDE (Integrated Development Environment)? 9
Taking a Look at the C# Express Start Page 10

Tools of the C# Express IDE 15
Structure of C# Express Solutions and Projects 16
Summary 18
Exercises 19

Chapter 2: Programming 101: A Quick Discussion 21

What Is Programming? 21
General Programming Overview 22
Hardware versus Software 22
Programming Then and Now 22
Compiled versus Interpreted 23

What about OOP? 24
Introduction to Windows Programming 25

Different Levels of Programming 25
Event Programming 26
Dynamic-Link Libraries 26

Summary 27
Exercises 27

02_589555 ftoc.qxd 12/29/05 8:28 PM Page xiii

xiv

Contents

Chapter 3: Quick Start Creating Your First C# Express Windows Project 29

Which Type of Application to Create: Windows or Console? 30
Differences between Using Windows and Console Applications 30
Purposes for Using Windows and Console Applications 30

Getting Started with Windows Application Projects 31
Setting the IDE up for a Windows Application Project 32
Overview of the Solution Explorer 37
Discussion about Properties 39

Adding Controls to the Form 41
Working with Code on an Event 46
Summary 49
Exercises 50

Chapter 4: Introducing .NET 51

Introduction to .NET Framework 51
Common Language Runtime 53
.NET Framework Class Library 53

Working with .NET Namespaces 55
Object Browser: Tool of the Namespace Trade 55
Supplying the Fully Qualified Namespace 59
The Using Directive 61

Summary 64
Exercises 65

Chapter 5: Getting into C# Types 67

What Are Variables and Constants? 67
Declaring and Assigning C# Variables 68
Standard C# Types 73
Naming C# Variables 76
Converting between Variable Types 77
Enumerations 79

Using C# Constants 80
Summary 80
Exercises 80

Chapter 6: Debugging Applications in C# Express 81

What is Debugging in C# Express? 82
Types of Errors That Can Occur in Your Applications 82
C# Express Debugging Features: Tools of the Trade 82

02_589555 ftoc.qxd 12/29/05 8:28 PM Page xiv

xv

Contents

Working with Breakpoints 86
Edit and Continue Feature in C# Express 87
Displaying and Modifying Variables when in Break Mode 89

Using IntelliSense 89
Additional Ways of Displaying Variables 90
Locals Window 90
Immediate Window 91
Watch Window 92
Additional Windows 92

Stepping through Code 92
Other Debugging Tools 93
Summary 94
Exercises 95

Chapter 7: Selections, Iterations, and Catching Exceptions 97

Performing Selections in Your Applications 98
Creating the Chapter 7 Project 98
Simple Selection Using if...else Statements 99
Working with switch . . . case Statements 104

Performing Iterations 109
Working with for Statements 109
Handling Objects with foreach Statement 111
Using do and while Statements 112

Catching Exceptions in Your Code 115
Starting Off Easy with try...catch Statements 116
Using the finally Statement 118

Summary 121
Exercises 121

Part II: Creating Applications with C# Express 123

Chapter 8: Working with Forms and Controls 125

Creating User Interfaces Using Windows Standards 125
Use of Switchboards 126
Form Application Types and Standards 127

Looking at Forms 128
Form Properties 128

Controls Overview 137
Control Properties 138
The MenuStrip Control 138
Moving, Aligning, and Resizing Controls 141

02_589555 ftoc.qxd 12/29/05 8:28 PM Page xv

xvi

Contents

Working with MDI Forms 144
The MDI Form Property 144
The MDI Line of Code 145
The Optional MDI Menu Property 145

Summary 147
Exercises 148

Chapter 9: Adding Dialog Boxes and Rich Text to Your Application 149

Introducing the Application 149
Working with the RichTextBox Control 153

Docking the RichTextBox Control 153
Some Other RichTextBox Control Properties 155

Introducing the Dialog Controls 158
Using the ColorDialog Control 158
Using the FontDialog Control 160
Using the OpenFileDialog Control 162
Using the SaveFileDialog Control 164

Summary 165
Exercises 166

Part III: Using Data in Applications 167

Chapter 10: Introducing Database Concepts 169

Getting Started with Databases 169
Looking at Databases in the Real World 170
Database Models 171
Relational Database Model 172

Working with Various Databases 176
File Server versus Client/Server 176
Front and Back Ends 176
Microsoft Access 176
Microsoft SQL Server 178

Summary 179
Exercises 179

Chapter 11: Using SQL Server Express Features within C# Express 181

Introducing SQL Server Express 181
Access to SQL Server 182

SQL Server Configuration Manager 182

02_589555 ftoc.qxd 12/29/05 8:28 PM Page xvi

xvii

Contents

SQL Server Tools in C# Express 183
Introducing the Database Explorer 183

Summary 192
Exercises 193

Chapter 12: Utilizing .NET Data Controls 195

Getting Started Using Data in Your Applications 195
Starting with Data Sources 196
Data Controls Overview 199

Using the DataGridView Control 199
Creating a DataGridView with Single Record Display 202

BindingNavigator Control 202
Summary 205
Exercises 205

Chapter 13: Working with ADO.NET 207

Introducing ADO.NET 207
Some Data Access History 208
Welcome ADO.NET 208

Using ADO.NET Classes in Your Application 209
Populating a ListBox Control 210
Adding a DataGridView Control 212
Executing Parameterized Stored Procedures using the SqlCommand Class 214

Summary 217
Exercises 217

Part IV: Finishing Touches 219

Chapter 14: Getting More Experience with Controls 221

Walking through the Demo Application 222
Demo 1: Browsing Web Files 222
Demo 2: Choosing and Displaying Dates 222
Demo 3: Working with Progress and Status Bars 224

Getting Started with the Tab Control 224
Displaying Files in a Web Browser 228

Controls Used for the Demonstration 228
Adding the Code for Browsing and Displaying Files 231

Working with Date Controls 239
Looking at the MonthCalendar Control 240
Looking at the DateTimePicker Control 241

02_589555 ftoc.qxd 12/29/05 8:28 PM Page xvii

xviii

Contents

Using ProgressBar and StatusStrip Controls 243
Describing the Progress and Status Bars Demo 243
Working with ProgressBar Controls 244
Adding the Code to Setup and Update the ProgressBar Control 245
Adding the Code to Run through the Days of the Month Chosen 248
Using the StatusStrip Control 250

Summary 252
Exercises 253

Chapter 15: Using Web Services from Your C# Application 255

Overview of Web Services 256
Looking Further at a Web Service Example 256
What Are Web Services? 257
Web Services Infrastructure 259

Locating and Referencing Web Services 260
Using the Web Service in Your Code 269

Coding for the DelayedStockQuote Web Service 269
Coding for the GlobalWeather Web Service 272

Summary 276
Exercises 276

Chapter 16: Publishing Your Application and Next Steps 277

Publishing Your C# Express Applications? 277
Where to Go from Here? 278

Developing for the Web: Visual Web Developer 2005 Express Edition 278
Moving Up to Visual Studio .NET 281
Using Third Party Tools and Other Sources of Information 281

Summary 281
Exercises 282

Appendix A: Answers to Exercises 283

Index 291

02_589555 ftoc.qxd 12/29/05 8:28 PM Page xviii

Introduction

If you are picking this book up and seriously thinking about buying it, which you should, then you are
likely just getting into software development for the first time. The Visual C# Express development envi-
ronment is a great way to start since (a) it is free and (b) it rocks! To get some of the terms out of the way,
Visual C# Express (call C# Express for short) is the IDE (Integrated Development Environment,) which
consists of the editor you will use, and other tools for developing your projects. C# is the actual pro-
gramming language. There will be lot of other terms that you will have to learn, but this is a good start.

I have been honored to have been able to teach literally thousands of developers, and have a written
more than a few books on software development, but I am more excited about writing this development
book than many others. The beauty of C# Express is that it introduces you to the power of C# but han-
dles a lot of the frustrating and confusing tasks for you, thereby making your first experience in pro-
gramming a far more pleasant one. When I first got into programming, I remember the excitement of
creating my first applications and actually having them work. Nowadays a lot of time developers get so
bogged down because of the environment they have to develop in. This is especially true when develop-
ing in lower-level programming language such as C.

The C# Express takes a lot of the pain away by providing design time objects using drag and drop, and
writing some of the more tedious code for you. By the end of this book, you will feel confident in using
the language of C# not only for the simple examples given here, but for moving forward into a lifetime
of creativity developing software applications that seriously have no bounds.

Who This Book Is For
This book is for those of you who are just getting into programming for the first time, whether you are a
high school student, hobbyist, or a professional looking to make a change. If you are already a software
developer using another language such as Visual Basic, then you will also get benefits out of portions of
this book, but it starts from square one for newbies.

Another group this book and C# Express is good for are those managers who want to get a handle on
what C# is all about, without investing a ton of time and money involved in the full-blown version of
Visual Studio .NET.

Although it is assumed that you have not had any kind of programming experience before, the book has
been written such that you can skip Chapter 2 and miss the basic information on programming. After
walking through the installation of C# Express, you will be given a chapter on what exactly is program-
ming and how you get started.

03_589555 flast.qxd 12/29/05 8:27 PM Page xix

xx

Current Head

What This Book Covers
This book covers the latest version (2.0) of the .NET programming language called C#, utilizing the
development environment that is C# Express. C# combines a powerful editor with tools, wizards, and
tutorials that help you create your first applications. The purpose of this book is to enhance your experi-
ence by giving other examples other that those provided in C# Express. Also covered is working with
data using SQL Server Express, which is included in C# Express. SQL Server is a database product, used
for managing information. C# Express provides tools for utilizing the data in your application, and this
book will discuss the ways to take advantage of those tools in your programs.

How This Book Is Structured
In writing this book, I consider the logical steps you would have to take if you were taking a class on
using C# Express. Broken into four parts, the book takes you all the way from introductory material and
concepts to how to deploy applications you have created. In each chapter tasks are given so that you can
take what you learn and put it to practical use. Following is the layout of the book and the order of top-
ics discussed:

Part I: Introduction and Concepts introduces various programming concepts, as well as takes you
through the Visual C# Express environment. Also covered are some of the base commands and concepts
of the C# language itself.

❑ Chapter 1—Starting Strong with Visual C# 2005 Express Edition. This chapter walks you
through installing the C# Express development environment and points out some of the various
tools that are included in the IDE for your use. A discussion of how C# Express organizes files
for projects and solutions is also included.

❑ Chapter 2—Programming 101: A Quick Discussion. Before you jump into the way commands
are specified, the syntax of the C# language, it is a good idea to get a good overview of program-
ming in general, as well as what is involved to program in the Windows environment. These
items will be covered, as well as some of the major areas in the C# language.

❑ Chapter 3—Quick Start Creating Your First C# Express Windows Project. Before you jump
into creating your own project, this chapter gives a quick overview of the starter kit that comes
with C# Express, which is an application that creates screen savers. After examining the differ-
ent types of possible applications you can create, you will create your first project, diving in and
get use to the C# Express environment.

❑ Chapter 4—Introducing .NET. Although this sounds intimidating, the .NET Framework is
made up of a number of assemblies and classes (which are explained in Chapter 2) that let you,
the developer, handle literally any task you need to when programming your application. This
chapter lists those .NET Assemblies and classes that are most commonly used in your develop-
ment.

❑ Chapter 5—Getting into C# Types. One of the most common elements of any programming
language is the use of variables for storing information in memory, and the types of data you
can use. The concepts you learn in this chapter will be used throughout the rest of the book.

Introduction

03_589555 flast.qxd 12/29/05 8:27 PM Page xx

xxi

Introduction

❑ Chapter 6—Debugging Applications in C# Express. When you are creating applications of any
kind, there is a process that you follow of writing the code, then testing and debugging the
code. This chapter shows you some of the tools that are available in the C# Express environment
for tracking down bugs (errors) in your code. C# Express offers some new technologies for mak-
ing the debugging task less onerous, including being able to stop the execution of code, edit the
code, and continue on executing the code without restarting. (Current developers are going
oohh, ahh at this point.)

❑ Chapter 7—Selections, Iterations, and Catching Exceptions. No matter how well you build
your code, exceptions are going to occur. How you handle these exceptions affects the overall
user experience in working with your applications. This chapter shows you how to handle
exceptions effectively.

Part II: Creating Applications with C# Express takes what you have learned in the preceding chapter
and shows you how to create user interface elements to create applications using Windows forms. C#
Express provides many new enhancements in creating applications and even writing some of the code.

❑ Chapter 8—Working with Forms and Controls. This chapter shows how to utilize Windows
forms and controls, such as the text box control and drop-down list boxes in your application.
You will see some of the various controls that are available for your use, as well as what are
properties, methods, and events that can be used with those controls. Lastly, you will learn how
to add code for those forms and controls.

❑ Chapter 9—Adding Dialog Boxes and Rich Text to Your Application. There are a number of
different dialog controls that make up standard Windows dialog boxes such as
FileOpenDialog and PrintDialog. This chapter lists those controls and walks you through
adding some of them to your own application by showing you how to create a quick Rich Text
Note Pad application.

Part III: Using Data in Applications examines database concepts, data controls, SQL Server Express fea-
tures, and ADO.NET.

❑ Chapter 10—Introducing Database Concepts. One of the things you are likely to have to do in
creating C# applications is to work with data in your application. Before you jump into the
mechanics of how you specifically do that, it is a good idea to get an overview of what a
database is. This chapter will give you the overview you need so you can feel comfortable dis-
cussing tables, columns, and relationships and know what you are talking about.

❑ Chapter 11—Using SQL Server Express Features within C# Express. While it is great to be
able to work in SQL Server Express, it is even better to be able to work in your database within
C# Express. This chapter shows you how to use a data source for your project and take advan-
tage of the visual tools within C# Express.

❑ Chapter 12—Utilizing .NET Data Controls. This chapter shows you the DataGridView control
and other data controls that you now use on your forms.

❑ Chapter 13—Working with ADO.NET. While you will be able to create a lot of data applica-
tions without using code, there will undoubtedly come a time when you will need to use code
with ADO.NET. This chapter explains how to utilize ADO.NET classes using code in your
applications.

03_589555 flast.qxd 12/29/05 8:27 PM Page xxi

xxii

Introduction

Part IV: Finishing Touches discusses the various ways to give your applications to other users to use.

❑ Chapter 14—Getting More Experience with Controls. This chapter creates a file browser using
a SplitContainer control, a WebBrowser control, and more. Two of the tasks deal with vari-
ous ways of working with date controls, status bars, and progress bars. This chapter includes
about 10 different very useful controls.

❑ Chapter 15—Using Web Services from Your C# Application. Web services provide solutions to
tasks that either don’t make sense for you to create or even maintain the code for, or for which
you would have to have access to outside data available from another company or facility.

❑ Chapter16—Publishing Your Application and Next Steps. Once you have created an applica-
tion and want to deploy (distribute) it, you need to know what to do. This chapter will discuss
additional steps to take once you have completed your first applications using C# Express.

What You Need to Use This Book
Everything you need to work with the examples of this book is included on book’s Web site or on the
CD in the back of the book. Beside the author’s examples (available on the book’s Web site), Microsoft
has generously supplied a full copy of Visual C# Express on the CD, which also contains SQL Server
Express.

Conventions
To help you get the most from the text and keep track of what’s happening, I’ve used a number of con-
ventions throughout the book.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ I highlight important words when we introduce them.

❑ I show keyboard strokes like this: Ctrl+A.

❑ I show filenames, URLs, and code within the text like so: persistence.properties.

❑ I present code in two different ways:

In code examples I highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or that has been shown before.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

03_589555 flast.qxd 12/29/05 8:27 PM Page xxii

xxiii

Introduction

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the
Search box or by using one of the title lists) and click the Download Code link on the book’s detail page
to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’sISBN is
0-7645-8955-5 (changing to 978-0-7645-8955-3 as the new industry-wide 13-digit numbering system
is phased in by January 2007).

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata, you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher-quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that has been submitted for this book and posted by Wrox editors. A complete book list includ-
ing links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem
in subsequent editions of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

03_589555 flast.qxd 12/29/05 8:27 PM Page xxiii

xxiv

Introduction

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

03_589555 flast.qxd 12/29/05 8:27 PM Page xxiv

Part I

Introduction and
Concepts

04_589555 pt01.qxd 12/29/05 8:29 PM Page 1

04_589555 pt01.qxd 12/29/05 8:29 PM Page 2

1
Starting Strong with

Visual C# 2005
Express Edition

Okay, so the title of this chapter may be a little over the top. But to be honest, the Visual C# 2005
Express Edition, from now on referred to as C# Express, rocks as a starting development environ-
ment. If you are just starting out in developing, you don’t realize how lucky you are to start with
an environment such as C# Express, which really tries to walk you through getting into program-
ming fairly gently. In the old days, just a few years ago (back when I had hair), you were handed
an editor such as Notepad.exe and given-command line programs to compile and run your appli-
cations. That has all changed.

For C# being such a powerful language, Microsoft has worked hard to make the development
environment that you use to create computer programs, even for seasoned developers, as painless
as possible. Before, when developing with a lower-level language, such as C or Assembly, you had
to put up with cryptic tools that were quite cumbersome to use for developing software. When
you used the language, such as Visual Basic, the tools got easier, but then you had to put up with
a less robust (i.e., less efficient) language. Now, with the .NET development languages, you get
the best of both worlds. You will read more about programming languages in general and the dif-
ferences between them in Chapter 2, “Programming 101: A Quick Discussion.”

This chapter starts off the book by walking you through installing C# Express for the first time,
along with SQL Server Express, which is the database component that you will mainly use with C#
Express. In addition, this chapter will also

❑ Talk about differences between C# the language and C# Express.

❑ Discuss what it means to use an integrated development environment (IDE)?

❑ Give you an overview of C# Express development environment.

❑ Take a look at how C# Express structures solutions and projects and what the difference is
between them.

05_589555 ch01.qxd 12/29/05 8:29 PM Page 3

What Is Microsoft Visual C# 2005 Express?
While I will be getting deeper into the various terminology and discussing what programming is in the
next chapter, now is a good time to clear up a couple of items about C# Express. First, what exactly is
C# Express? Exactly what is the difference between C#, the programming language, and C# Express?

The Differences between C# and C# Express
C# Express is actually what is called an IDE, or integrated development environment. What this means in
plain English, or whatever language you are reading this in is that C# Express is a set of tools, including
a special text editor that enables you to write computer programs in C#, the software development lan-
guage. It also handles other necessary tasks such as building your application to either test for errors or
release for people to use.

Microsoft wanted to come up with a way to get those who are not yet C# developers interested in pro-
gramming, such as hobbyists and students. Prior to this, you could create your C# applications a couple
different ways:

❑ Use a simple note pad or third-party editor, and then use the command-line compiler. Really,
only long-time hardcore developers use this method, where you need no support for develop-
ment and want to struggle through compiling the programs yourself.

❑ Use Visual Studio .NET to development and maintain your C# code and application. This is
the preferred method if you can afford Visual Studio.

Now Microsoft has created the Express series to give you experience with developing using the last
method but with pared-down features. The full-blown versions of Visual Studio contain supersets of
commands found in the Express versions.

Members of the Express Series
In an effort to expose new developers of all kinds to their different products, Microsoft has created the
Express series. The following products are part of this series and can be downloaded from the Web at
http://lab.msdn.microsoft.com/express/default.aspx or, as with Microsoft Visual C# 2005 Express, can
be found on the CD in the back of this book.

Besides C# Express, other products in the series include:

❑ Visual Basic 2005 Express

❑ Visual C++ 2005 Express

❑ Visual J# 2005 Express

❑ Web Dev 2005 Express

❑ SQL Server 2005 Express

The first three in this list are additional programming languages. Web Dev Express introduces you to
Web development with ASP.NET and can be used with each of the four languages in the Express series.
SQL Server Express is a scaled-down version of SQL Server, which is a database management system.

4

Chapter 1

05_589555 ch01.qxd 12/29/05 8:29 PM Page 4

Since SQL Server Express is distributed with C# Express, and the other languages, all of Part III, “Using
Data in Applications” features SQL Server in this book.

Before getting into what is included in the C# Express development environment, you need to install the
product on your system. This is the purpose of this first Try It Out.

Try It Out Installing Microsoft Visual C# Express
Taking the CD that came with the book:

1. Place the CD in the CD-ROM drive. An installation window appears, giving you the choice to
install Microsoft C# 2005 Express.

2. Click Microsoft C# 2005 Express. The installation program begins, displaying a welcome page,
as shown in Figure 1-1.

Figure 1-1

3. Click Next. The next page displays the EULA, or End User License Agreement.

4. After thoroughly reading the EULA (of course), place a check mark in the check box that reads
“I accept the terms of the License Agreement,” as displayed in Figure 1-2.

5. Click Next to continue the setup. You now have the option of installing SQL Server Express and
the MSDN (Microsoft Developer Network) Express Library.

6. Place a check mark next to the additional two products, as shown in Figure 1-3.

5

Starting Strong with Visual C# 2005 Express Edition

05_589555 ch01.qxd 12/29/05 8:29 PM Page 5

Figure 1-2

Figure 1-3

6

Chapter 1

05_589555 ch01.qxd 12/29/05 8:29 PM Page 6

In addition to the products covered in the Express version of MSDN, MSDN contains a ton of articles
and information for all the various Microsoft developer products, including an extensive knowledge
base. So, in addition to installing the MSDN library version here for the Express products, check out
the MSDN home page online at http://msdn.microsoft.com/. For the library area, go to http://
msdn.microsoft.com/library/default.asp, where you can search the knowledge base for any issues and
problems that come up.

If you have never loaded any software that required it before, you may have to load .NET Framework 2.0
as well.

7. Click Next to continue the setup. The next page, shown in Figure 1-4, displays where the
C# Express applications will be installed.

Figure 1-4

8. Click Install if you are OK with the default location; otherwise, click Browse and select where
you want them placed. The installation program now sets up your three products, as shown in
Figure 1-5.

The success page shown in Figure 1-6 appears. Setup is now complete.

9. Click Exit to close the setup dialog box.

C# Express has now been installed.

You can now choose Program Files → Visual C# 2005 Express from the Windows Start menu to see the
starting page for Visual C# Express, as shown in Figure 1-7.

7

Starting Strong with Visual C# 2005 Express Edition

05_589555 ch01.qxd 12/29/05 8:29 PM Page 7

Figure 1-5

Figure 1-6

8

Chapter 1

05_589555 ch01.qxd 12/29/05 8:29 PM Page 8

Figure 1-7

The following sections explain some of features of the C# Express development environment that you
will be using first, along with some of the tools included.

Overview of C# Express Development
Environment

The C# Express development environment takes almost as much time to learn as the C# language itself.
OK, not really, but there are a lot of tools that can make your development experience more enjoyable and
give you more control as you are creating applications. The first page to go over is the start page that
appears when you first open the C# Express IDE. Herein lies a good question — what the heck is the IDE?

What Is the IDE (Integrated Development Environment)?
The Integrated Development Environment (IDE) is just what it sounds like: a development environment
that includes an editor for writing your code, as well as integrated tools for managing your software
projects.

9

Starting Strong with Visual C# 2005 Express Edition

05_589555 ch01.qxd 12/29/05 8:29 PM Page 9

When you write the commands for creating your application, called code, errors will invariably occur.
These errors are called bugs. Some of the tools included help you with “debugging” your code. Other
tools help you tie in data to your applications and organize your code projects

The section “Tools of the C# Express IDE” coming up in the chapter goes into further detail on what is
included in the IDE. First, check out the information on the C# Express Start Page.

Taking a Look at the C# Express Start Page
Remember that C# Express was created to help new developers get comfortable creating applications.
When you first go into the full version of Visual Studio .NET, you are placed in its IDE without much
explanation. This can be confusing for new and experienced developers alike.

Microsoft has tried to alleviate some of the confusion by including help for new developers, as well as
links for getting answers to issues that you may have. Looking at the Start page back in Figure 1-7, note
that the page is broken up into three categories: Building Applications, Learning How to Program, and
Connecting to the Community.

Getting Started
This category focuses on what it takes to create a project using C# Express. It doesn’t really cover what
goes into programming itself but rather what it takes to manage the code files and others. Here is the list
of help topics covered, as seen under the Buildings Applications category:

❑ Create Your First Console Application. Console applications are a type of computer program
that does not have any kind of user interface (e.g., forms) and performs specified tasks such as
downloading data (taking information from the Web) or uploading data (putting information
up on the web). Another example may be a print server, which sends documents to a printer
without any user intervention.

❑ Create Your First Windows Application. Windows applications include forms for inputting
data and prompting users. These can be tied to a database for managing data such as is used in
accounting software or a mailing list. Video games are another example of Windows applica-
tions where you will create forms as a user interface.

❑ Create a Screen Saver Project. To help you get started in programming in C# using C# Express,
Microsoft included a project template that helps you create a screen saver that can be used on
your computer.

A project template is a project that has been started for you, to give you a jump start in writing the par-
ticular type of project, including various files needed for that type of project. A number of project tem-
plates are available; the first three are those just mentioned in the list. The other topic, Class Library, is
discussed in Chapter 2.

❑ Debugging. This help topic takes you through the various ways to debug your project as you
are building it. It points out the major tools to debug your project and how to use them. This
topic is discussed in greater detail in Chapter 6, “Debugging Applications in C# Express.”

❑ Using the C# Express IDE. This topic points out various tools included in the C# Express IDE —
much like this chapter does in the “Tools of the C# Express IDE” section

10

Chapter 1

05_589555 ch01.qxd 12/29/05 8:29 PM Page 10

Please note that these options don’t cover everything that you can do with C# — a notable exclusion
being ASP.NET code. The C# Express Environment gets you started using C# the language, but it
doesn’t provide all the possibilities for C#.

Learning How to Program
Whereas the previous category points out various features in the C# Express, this category on the Start
page presents information on the C# language itself, as well as displaying additional features of C#
Express.

Remember the distinction: C# is the language; C# Express is the set of tools created to help you write
programs using the C# language.

Topics are as follows:

❑ Learning the C# Language. Just as the title says, this topic discusses getting going in the C# lan-
guage, including structures of your programs and statements that you can use.

❑ Getting Started with C# Express. This topic overlaps other topics and also refers to other topics
within this one. The topic discusses how C# is different from other programming languages, as
well as how to get started creating your first C# application.

❑ C# Express IDE Features. The topic discusses various IDE features available to help you write
and compile your C# applications.

After writing your code, C# Express compiles the code from the syntax that you understand to a lan-
guage closer to what the computer understands. Compilers and compiled languages are discussed fur-
ther in Chapter 2, “Programming 101: A Quick Discussion.”

❑ C# Reference. This handy help topic contains a reference to the various commands (statements)
within the C# programming language.

To be honest, I wouldn’t recommend looking through this reference just yet. While the other topics use
fairly easy to understand prose, the last just spits out the definitions of what the statements are. While
this is great after you have been using the development language for a while and want to quickly find
out a definition or syntax (various ways to write a particular programming statement), trying to take it
all in when you are just starting out developing can be pretty intimidating. I would save this last topic
for after you have read at least half of this book.

Connecting to the Community
While the last two categories of the Start page have been help topics that display static text to explain
various parts of C# and C# Express, this section contains links to other Web sites that help support
your coding. All of these links take you to sites under the MSDN (Microsoft Developer Network) main
Web site.

❑ Visit the Visual C# Express Developer Center. This link takes you to the main Visual C# devel-
oper page and is loaded with great information. However, as with the last topic, I would hold
off going to these links until you feel comfortable “speaking C#.”

11

Starting Strong with Visual C# 2005 Express Edition

05_589555 ch01.qxd 12/29/05 8:29 PM Page 11

❑ Get Involved with the Visual C# Community. As you start developing in C# and are finding
yourself running up against a wall as far as coming up with the proper commands, this link is a
great resource. This link takes you to a number of newsgroups available on the MSDN site. Take
advantage of them, but remember that most of the contributors are pretty advanced developers
and may not have the patience to help you all the way through a solution. That being said, the
majority of them are excited to help out new programmers, also called newbies. If you let them
know you are new, often they will write the code themselves and send it to you. Another good
suggestion is to read a bit and search for your topic in earlier posts before posting, because post-
ing a topic that has already been amply addressed can sometimes annoy people.

❑ Report a Bug. Clicking this link takes you to the MSDN Product Feedback Center. Always look-
ing to improve their products, Microsoft is constantly seeking feedback from users and devel-
oper on their products, so don’t hesitate to go here if you have an issue with the product.

❑ View Top Downloads. Another very useful link, this one takes you to an MSDN page, shown in
Figure 1-8, where you can download various examples and utilities.

Remember that this one is for both new and advanced developers, so you need to check the
overview of the download to find the sophistication of the coding you want. Unfortunately,
they are not labeled as such, and you can find yourself being quickly overwhelmed.

Figure 1-8

12

Chapter 1

05_589555 ch01.qxd 12/29/05 8:29 PM Page 12

When you click a link and want to get back to the main start page, whether it is one of the help topics or
a third category link, you can right-click and choose Back, as shown here in Figure 1-9.

Figure 1-9

Besides the newsgroups and Web sites displayed in the Connecting to the Community category on
the start page, a number of Web sites are dedicated to supporting C# and .NET developers. Two of the
most active are www.GotDotNet.com and www.DotNetJunkies.com. (I happened to write a column for
DotNetJunkies.com called “The First Hit,” where I discuss various issues that you as a beginning devel-
oper face in the .NET world of programming.)

Before jumping in to the different C# Express IDE tools, you need to create your first C# project so that
you have more of an idea of what you are doing when you finally get to work with the tools.

Try It Out Creating Your First C# Project
1. Choose Program Files → Visual C# 2005 Express from the Windows Start menu. The IDE opens,

and the Start Page is displayed.

2. Select New → Project from the Files menu. The New Project dialog box appears, giving you a
choice of templates.

3. Highlight Console Application. Remember that this type of application doesn’t have any forms
or interface. It is also the easiest to start with.

4. Type in the name of the project you want to create. For this Try It Out, Chapter1Console was
used, as shown in Figure 1-10.

5. Click OK. Your project is now created, as shown in Figure 1-11.

Alright! You have now created your first project. Notice I didn’t say application, because this project
really doesn’t do anything. Before you add code to this, take a look at some of the tools available in the
C# Express IDE.

13

Starting Strong with Visual C# 2005 Express Edition

05_589555 ch01.qxd 12/29/05 8:29 PM Page 13

Figure 1-10

Figure 1-11

14

Chapter 1

05_589555 ch01.qxd 12/29/05 8:29 PM Page 14

Tools of the C# Express IDE
In addition to the tools in Figure 1-11, I will introduce other tools throughout the rest of the book as
needed. For starters, you can see some of those tools in the following list:

❑ Main Editor. This tool is the one you will likely use the most when you are working with your
C# Express projects, because you use it to edit the code and the majority of projects are made up
of code files. You can see from the tabs at the top of the editor that you can have more than one
code file open at the same time. And, in fact, you can display different types of files in the main
editor page, as shown here with Program.cs and the Getting Started page.

When you have another file, such as a Windows form, note that you can have both the form and
code files open at the same time. As shown in Figure 1-11, the editor actually helps you control
your program when formatting your code. This will become more apparent as you perform
more extensive coding.

Files are loaded as you double-click on them in the Solution Explorer. You use the Main Editor
tool to edit both forms that you can drag and drop to design and code files.

❑ Solution Explorer. The Solution Explorer helps you to organize your projects by putting your
files in the order C# Express thinks they should be in for the project type you are creating. For
example, look at the Solution Explorer located left of the main editor in Figure 1-11. You will see
an entry called References. If you click on the plus sign, you will see the files located under that
“node” of the solution tree, as shown in Figure 1-12.

Figure 1-12

15

Starting Strong with Visual C# 2005 Express Edition

05_589555 ch01.qxd 12/29/05 8:29 PM Page 15

You can see the files that are referenced listed in Figure 1-12. These files are called .NET assem-
blies and contain classes that you will use to create your application. .NET assemblies and
classes are both discussed further in Chapter 4, “Introducing .NET.”

The following are additional tools that are not displayed but are used throughout the book:

❑ Toolbox: This pane contains controls that you add to your forms, and changes based on what
type of applications you create.

❑ Data Sources: This tool helps you maintain and work with data in your application.

❑ Console: This is where you display output in both console applications and when debugging
your applications.

❑ Properties: You use this tool to set various properties of different objects you will use in
your projects. An example of an object could be the text of a label control, used to display
literal values.

Note that some of the tools and their panes will appear as needed depending on where you are in the
IDE. Now it’s time to discuss how C# Express applications are structured in more depth.

Structure of C# Express
Solutions and Projects

It can be kind of confusing as various terms are being whipped around. A couple of those terms are
solution versus project. Are they the same? The answer is not really, but they can be. How is that for a
definitive answer?

When you create a new project, a solution is created for you automatically. You can have multiple pro-
jects in a single solution. In fact, you can even have different types of projects, including different lan-
guages. For example: If I had a developer friend who has developed a useful tool that I want to include
in my application, and it was created using Visual Basic .NET, I could still use it in my solution by creat-
ing a reference to it. I also could edit the code if needed by adding the existing project to the current
solution. (For the majority of this book you will be using a single solution containing a single project.)

To finish off this chapter, you will add a line of code that performs the classic task of displaying the
phrase “Hello World.” The exact syntax that you are writing will actually be discussed later; I just want
you to have the satisfying experience of creating and running an application.

Try It Out Completing the First C# Express Project
With the project you created in the first Try It Out:

1. Place the cursor between the opening and closing brackets, under the line of code that starts
with the word “static.”

16

Chapter 1

05_589555 ch01.qxd 12/29/05 8:29 PM Page 16

2. Type the command:

Console.WriteLine(“Hello World”);

The editor then changes the colors of the words appropriately. Editing your applications is dis-
cussed further in Chapter 3, “Quick Start Creating Your First C# Express Windows Project.” The
IDE then looks something like Figure 1-13.

Figure 1-13

You have actually completed your first C# console application. Now you just have to build and
compile it.

3. Select Debug → Start. This builds, compiles, and runs your application. Alternatively, you can
press F5.

Now the Console window appears in the lower left corner of the IDE with the words “Hello World” dis-
played, as shown in Figure 1-14.

There you have it, your first application. Now it may not seem like much, but it is a start. What you did
was tell the computer to print (WriteLine) the words “Hello World” into the Console window.

17

Starting Strong with Visual C# 2005 Express Edition

05_589555 ch01.qxd 12/29/05 8:29 PM Page 17

Figure 1-14

Summary
Microsoft Visual C# 2005 Express is one of a series of applications created to introduce you to the world
of programming. You have now installed the C# Express IDE onto your system, and even know what the
initials “IDE” stands for. You have also learned that with C# Express you can create different types of
applications depending on which template you use.

When you first open C# Express, you are taken to the Getting Started page, which has three categories of
help, as well as links to other Web sites with additional articles and downloads.

In C# Express, you create projects, which are part of an overall solution. You can manage your project
using the Solution Explorer and edit code using the Main Editor window. In this chapter you created
your first console application. Then you built, compiled, and ran it, displaying information in the
Console window.

18

Chapter 1

05_589555 ch01.qxd 12/29/05 8:29 PM Page 18

Exercises
1. What is the difference between Visual C# and Visual C# Express?

2. What are the three categories on the C# Express start page?

3. What does the acronym IDE stand for?

4. Name three of the tools available in the C# Express IDE.

5. What is the difference between a console application and Windows application?

19

Starting Strong with Visual C# 2005 Express Edition

05_589555 ch01.qxd 12/29/05 8:29 PM Page 19

05_589555 ch01.qxd 12/29/05 8:29 PM Page 20

2
Programming 101:
A Quick Discussion

You, as the reader, may not be a computer scientist. In fact, I would bet my special edition version
of HALO 2 that you aren’t. If you were, you wouldn’t deem it necessary to read an introductory
book to anything. Therefore, since you have not probably studied software development to any
extent, this is a good chapter for you. In fact, if your computer science teacher or professor were
to read this chapter, they might cringe in their Birkenstocks, because this chapter briefly gives an
overview of programming in general. There are whole series of books on the topic; I’m just trying
to provide some understanding about why you have to perform some of the steps you do in
programming.

When doing any kind of programming, you should first understand some of the terms and con-
cepts behind it, and just what it entails. While the majority of the book will have you coding and
creating actual programs, for this chapter you can sit back and relax in a nice comfortable recliner
and read away. This chapter:

❑ Gives a history of programming and talks about software versus hardware.

❑ Discusses the differences being compiled and interpreted languages.

❑ Goes over Windows programming and discuss events.

What Is Programming?
Nowadays, even those who are just end users of computer have heard the term “computer pro-
gramming”. In the real world you heard about various cults which “program” their members into
believing or behaving certain ways. Computer programming is basically the same thing, only it
you, the new developer, telling the computer what to do. (The believe part doesn’t carry over as
well, but you get the idea.) Over the years there have been different ways to tell the computer
what to do, and the exciting news is it is getting easier as time goes on.

06_589555 ch02.qxd 12/29/05 8:35 PM Page 21

This chapter talks about some of the “languages” that have been used to tell the computer what to do,
and how it is accomplished today. To start, you need to know more about what it means to program a
computer.

General Programming Overview
When you are programming a computer, you are giving commands to it. These commands come in the
form of line of code called statements that are grouped together to form one or more tasks. An example is
in accounting software when an end-of-month report must be created. Code would be written to accom-
plish this. In C# this code can be found in the form of methods that you write in programs and store on
the computer’s hard drive to perform again when needed. You will be hearing more on methods as you
work throughout the book.

Hardware versus Software
This may seem like a simplistic topic, but some people when they start out programming still have a
question about hardware versus software. Hardware is the physical computer components such as mon-
itors, drives, and the box itself.

You can, in fact, program hardware, and C has been used for this purpose, but you are then creating
software that runs on the hardware. When you are developing programming for hardware, you gener-
ally are writing programming for very low-level systems where the program is then put on the chip that
is the CPU (central processing unit) of the computer itself, or on various peripherals such as printers,
modems, and so on.

There are different levels and types of software programs (applications) you can write. Following are
some examples:

❑ Operating system level. This type is used to create programs that manipulate the operating
system to perform a function.

❑ Drivers and utilities. Good examples of drivers are printer drivers. These work with various
ports on the computers to help certain hardware work with various operating systems.

❑ Video games. This type of software takes a lot of skill and creativity; video game development,
even though it sounds glamorous, is some of the toughest software to create.

❑ Business applications. Accounting applications and software such as Microsoft Office applica-
tions are used by the millions daily.

There are many more types of applications that you can create, and the cool thing is now you can write
them all using C#.

Programming Then and Now
In the last 50 years of software development, there have been perhaps thousands of different software
languages created. However, punch-card technology was used as far back as the 1800s. With this tech-
nology, holes punched in each card told the computer specific commands based on their locations and

22

Chapter 2

06_589555 ch02.qxd 12/29/05 8:35 PM Page 22

groupings. Unfortunately, you were in a lot of trouble if you dropped these cards, because an application
could require hundreds of cards.

Some of the first hardware “programming” was performed by throwing switches on the front panel of
a humongous (technical term) computer that can’t even match the power of the simplest calculators
nowadays. In the mid-1950s the first operating system was created, and programs were then able to be
stored on magnetic tape, although punch cards were still used. From the 1950s on, other programming
languages were created such as Assembler, COBOL, FORTRAN, and Pascal. Each language tended to
lean toward one type of industry over another. For example, COBOL is mainly used for business appli-
cations, whereas FORTRAN is known for scientific applications. Assembler was designed for creating
system-level utilities, as well as compilers for the other programming languages. Compilers are dis-
cussed in the next section. Some languages, such as Basic, are used in the various industries. Many ver-
sions of each language have been created.

When personal computers came out in the early 1970s, Microsoft then brought the Basic language to the
Altair PC.

Two nerd trivia answers:

— BASIC stands for Beginner’s All-purpose Symbolic Instruction Language.

— The Altair PC was named after the planet in Star Trek.

C programming, the grandfather of C#, came into being right around 1970 and was originally created for
the UNIX operating system. The C language was then brought over to the PC and not only took the
place of other low-level languages such as Assembler but also was used for creating business-type appli-
cations. C++ was then created to take C into object-oriented programming (OOP), introducing inherited
and black box programming (discussed further in the section called “What about OOP?” coming up in
the chapter).

The majority of the programs were created using text editors, and the programming languages were
then linked and compiled by using command-line instructions (remember the DOS prompt?). Then
Microsoft and other companies came out with more visual tools for creating applications, with Microsoft
calling their line of programming languages Visual Basic, Visual C++, and so on. Currently, Visual
Studio.NET is their tool for editing and maintaining their various languages such as Visual Basic.NET
and Visual C#.

With the .NET platform, the playing field has been leveled out for Visual Basic and C# so that developers
can choose which language they are comfortable with based on their experience. While syntactically dif-
ferent, they use the same type libraries and compile down to the same language with .NET. The .NET
Framework is discussed in greater detail in Chapter 4.

Compiled versus Interpreted
Besides purpose and ease of use, another difference between programming languages is whether they
are interpreted or compiled. Before you learn how both compiling and interpreting works with program-
ming, think about when somebody gives a speech in another language, such as Spanish. Sometimes a
person will be beside the speaker repeating each sentence in English. This person is called an interpreter.
If the speaker gives her speech in Spanish, and then someone writes it out or tapes it in English, then the
speech is being compiled into English. The same works for programming.

23

Programming 101: A Quick Discussion

06_589555 ch02.qxd 12/29/05 8:35 PM Page 23

Interpreted
When a programming language is interpreted, you write your code and run the application. Each line
of code is then interpreted as it runs and is changed into machine code at that moment. The good thing
was that you could run your code, have it break, fix it, and continue on from there. The language didn’t
require the linking and compilation time of other languages. The downside was these languages tended
to be slower to run. The Basic language was an interpreted language when it started, but then compiled
versions of the language began appearing in the 1980s. Most Web scripting is also interpreted today.

Compiled
Compiled languages would compile the code you wrote into executables (*.exe), which are more at the
machine level and therefore much quicker to execute. However, this meant that you would have to write
your code and link the application (now called building), which entailed specifying the various pieces
of the applications to include, such as your code files and any other support files necessary. After linking
the files, you then had to compile the applications. At the time of compiling, some errors would occur,
and you would fix the application, then relink and recompile.

If the application got through the compile without any syntax errors, you could run the application.
However, if errors occurred at that time, you would have to then find and fix the error and then relink
and recompile.

C# Express
The awesome news is developers today have the best of both worlds. Visual C# Express does build and
compile your applications, but it is:

❑ Extremely quick and convenient. By pressing F5 in the IDE, C# Express builds and compiles
your solution, then runs the applications if no errors exist.

❑ Very helpful with errors. Now when you receive errors when building and compiling, those
errors are listed in a task pane at the bottom of the IDE, and the errors are highlighted nicely in
the code. It even provides additional help regarding the errors in the form of ScreenTips when
you place the cursor over them.

❑ Change code and continue. Once only available in interpreted languages, if your application
breaks when running, you can change the code and continue without having to reset the whole
application. This feature rocks and will mean much more to you as you work through the rest
of the book.

What about OOP?
OOP, or object-orientated programming, is a programming paradigm in which the developer focuses on
objects, such as a form, that are derived from classes, which are like a cookie cutter for the objects. In C#
a good example is controls, such as TextBox controls that you use. Each has properties, which describe
something about the object created, such as the Width and Height properties, and methods, which per-
form actions with and for the objects, in this case, the TextBox controls.

24

Chapter 2

06_589555 ch02.qxd 12/29/05 8:35 PM Page 24

The concept of black box programming means that you will be organizing your classes such that once
you have created and tested them, the other parts of the program, or other developers, don’t have to
know about what commands are being used inside the class to use the methods and properties of that
class. The class itself is like a “black box” to those using them.

With OOP you also get inheritance. Inheritance in this case means being able to create your own class
based on another class, adding features to that new class. Say, for example, you want to create a new
type of TextBox control with more features than the standard one.

The .NET framework is built around OOP features, and you can use its classes for your own use. Chap-
ter 4 discusses this in more detail. For now, remember that even the forms you work with are actually
classes with the above-mentioned properties and methods, as well as, which are discussed in the section
called “Event Programming” later in this chapter.

Introduction to Windows Programming
With the introduction of Windows 3.0 in 1990, the programming world once again changed tremen-
dously. With Windows programming came a whole new way of thinking for developers when develop-
ing applications.

Different Levels of Programming
Nowadays, when developing in the Windows environment, you have so much power because you not
only have control over your application but also access to the very Windows system environment itself.
In the past, application programming and system programming were very separate areas of develop-
ment, but now the line has blurred quite a bit, especially with the introduction of the .NET development
platform. I find myself performing system-level tasks such as logging errors into the Windows event log
in my application programming. Following are different levels of programming:

❑ Desktop application programming. Involves programs that perform tasks such as business
applications or video games. Included in the business category of development are applications
you purchase such as Microsoft Word and Excel.

❑ System programming. Involves programs that are used “under the covers” by Windows to
accomplish system-level tasks. Also, when the program manages a feature of Windows, system
programming is being used.

❑ Web development. Created specifically to run in browsers, these applications can now utilize
both HTML and programming languages to develop applications used across the Internet.

As mentioned, the lines between these three types of programming blur because you can now access the
Web and perform system functions right from within desktop applications you create with very little
effort. Web access from with your applications is discussed further in Chapter 15.

One of the terms synonymous with Windows programming is event programming.

25

Programming 101: A Quick Discussion

06_589555 ch02.qxd 12/29/05 8:35 PM Page 25

Event Programming
Events in Windows are much like events in real life. An event occurs when an action takes place. When
the day of your birth occurs once a year, a birthday occurs. The birthday is an event. In a Windows
application, when a user clicks a button, an event occurs. There are events for many different actions that
occur within Windows and Windows applications. Because Windows is a multitasking environment,
how can you deal with multiple applications running simultaneously? Answer: With events — you only
respond to what the user is currently doing; other code can wait “in the background” until it is needed

Which events exist depends on which Windows system you are working with, the development envi-
ronment, or programming language you are using. With applications, depending on the language, you
can create your own events on objects in the applications.

In the first chapter you created a Windows form using C# Express. Window forms have specific events
built in, and because it is so flexible, you can create additional ones if needed. The following table
describes some of the more common events you will use with forms.

Event Description

Activate Occurs when a form is activated, such as when the focus switches from another
form onto the current form.

Close Occurs when a form closes.

Load Occurs when a form is loaded.

Deactivate Occurs when the focus switches from the current form to another.

Controls used on forms also use events. The Click event of the button mentioned earlier in the section
is an example. Developers can program code for these events. You will learn about the code throughout
the rest of the book, starting with the next chapter.

Dynamic-Link Libraries
One of the features introduced with Windows programming are dynamic-link libraries. Prior to
Windows, when applications were created, you could link libraries of routines into your own applica-
tions. The problem was that when a library changed that was used by many applications, all of those
applications had to be relinked and recompiled.

With the dynamic-link libraries, which usually have the extension .dll, you can change routines in the
library itself and recompile them, and all the applications would then be able to utilize them without
having to be relinked and recompiled. You can use those libraries in various applications without having
to rewrite the code.

Using DLLs is very convenient. However, as new versions of DLLs are introduced, problems can occur
such as the application getting confused as to which version of the DLL to use. This is known as DLL
hell, another technical term. Fortunately, .NET has solved a number of these issues by introducing ver-
sioning and wrapping up system DLLs for developers.

26

Chapter 2

06_589555 ch02.qxd 12/29/05 8:35 PM Page 26

Summary
Since punch cards, computer programming has been developing for good number of years and has seen
tremendous advances in the last 50 years. Programming languages can be interpreted or compiled, with
benefits being seen in both. Microsoft has worked to take the best of both into their new .NET program-
ming languages.

Windows programming has advanced software development with event programming and dynamic-
link libraries. With events you can create applications that react to the user’s needs and actions.

Exercises
1. What is the difference between hardware and software?

2. What are the differences between compiled and interpreted?

3. Name the three levels of Windows programming mentioned in the chapter.

4. What are dynamic-link libraries used for?

27

Programming 101: A Quick Discussion

06_589555 ch02.qxd 12/29/05 8:35 PM Page 27

06_589555 ch02.qxd 12/29/05 8:35 PM Page 28

3
Quick Start Creating
Your First C# Express

Windows Project

The first couple chapters have given you a small taste of what it takes to use C# Express to create
your applications. The applications haven’t had any kind of user interface such as a Windows
form involved. The various C languages in the past have been used for lower-level programming,
such as creating compilers and other system-level programs that don’t require interfaces. This is
mainly because of the effort it takes to create those forms in the lower-level languages. Now with
Visual C# Express and the professional Visual Studio .NET tools, creating business programs using
C# having user interfaces is as easy as using other languages such as Visual Basic .NET. In fact,
you will use the same .NET classes to accomplish creating the interfaces.

There are two kinds of interface programming templates: Web form applications and Windows
(form) applications. However, in C# Express, only the latter is included. There are a lot of things to
learn about creating and working with programming Windows applications using C#, and I want
you to jump in and get some experience with it before delving deeper into how to program forms
to a greater degree in Part II, “Creating Applications with C# Express.”

In this chapter, you will learn:

❑ How to decide which type of application template to use.

❑ How to create your first Windows application.

❑ What makes up a Windows form.

❑ How to add text boxes and a button control to a Windows form.

❑ How to work with code on form and control events event.

07_589555 ch03.qxd 12/29/05 8:32 PM Page 29

Which Type of Application to
Create: Windows or Console?

In Chapter 2, you learned what software development is about and got acquainted with Windows event
programming. In C# you will use those concepts in just about all the applications you create, but there
are some further distinctions that you need to understand first.

Differences between Using Windows
and Console Applications

It is kind of a misnomer to say that Windows and console applications are that different just by their
given name, since you are still going to be working with the Windows operating system in a console
application and accomplishing tasks that a console application would perform within a Windows appli-
cation. The real difference is the lack of including a user interface in console applications, meaning you
aren’t using forms to display or retrieve information.

Purposes for Using Windows and Console Applications
The real difference between the two types of projects is the purpose of your final application. C# Express
includes templates for each type so that you can start out with only the necessary files in your project.
Those types are Windows and console applications.

Console Application
Console applications, lacking the user interface, are great for utilities that need to run without user inter-
vention. For example, I have used console applications for updating stock figures once a day from S&P
500 stocks into a SQL Server database. This capability is discussed further in Chapter 15, “Using Web
Services from Your C# Application.” Because this application is scheduled by the system to run at a cer-
tain time in the day and does not require a user to do anything, it is a perfect console application.

Windows Application
Windows applications cover a wide range of applications. Anything from business applications to utili-
ties and video games are considered Windows applications. Basically, most of the applications that
require user interfaces such as forms are Windows applications.

30

Chapter 3

07_589555 ch03.qxd 12/29/05 8:32 PM Page 30

Getting Star ted with Windows
Application Projects

When creating a Windows application project, you choose the Windows Application template from the
list of templates in the New Project dialog box. Once you have supplied the name for the project and
clicked OK, the new project is created. Unlike the Console Application project template, which takes you
into a class module, when the Windows application project is created, a file representing a form is dis-
played. Before I address the various types of files used in an Windows application type project, take the
time to create your first Windows application project.

Try It Out Creating a Windows Project
Just to start nice and clean, close C# Express if you have it opened. Next:

1. Open C# Express. The Start Page appears, as shown in Figure 3-1.

Figure 3-1

31

Quick Start Creating Your First C# Express Windows Project

07_589555 ch03.qxd 12/29/05 8:32 PM Page 31

2. Choose Project from the File ➪ New menu.

You may be tempted, as I was, to click the topic “Create Your First Application” in the Getting Started
section. Don’t. Remember, this is just the help topic and does not perform the task.

3. The New Project dialog box appears, displaying the various types of projects you can create.
Highlight Windows Application.

4. In the Name field, type the name you want to call the project. For this example,
Chapter3FirstWinApp was used, as shown in Figure 3-2.

Figure 3-2

5. Click OK. The project files are created, and a form appears, as shown in Figure 3-3.

Setting the IDE up for a Windows Application Project
In a perfect world, the C# Express IDE would display all the panels you desire and need for a Windows
application project. But it doesn’t happen, because the IDE will open up with whatever settings you
used the last time you were working in C# Express. If you were editing a console application project the
last time, the editor is not set up for what you want to do this time.

Here are a couple of the items shown in Figure 3-3 and one that you will add.

❑ Toolbox. Needs to be pinned opened. The Toolbox contains controls that you will want to use
on your forms.

❑ Solution Explorer. Can be expanded so you can see more of the various files used in the project.

❑ Properties pane. As with the Toolbox, this pane is used quite a bit with forms and controls, and
is very handy to have displayed under the Solutions Explorer. You will add this in the following
Try It Out.

32

Chapter 3

07_589555 ch03.qxd 12/29/05 8:32 PM Page 32

Figure 3-3

All of the settings listed in the preceding list are really up to your personal preferences. I happen to have
found them to be particularly useful when working on Windows application type projects. Also, your
IDE may be set up differently if you have been working on other projects, so some of the steps in the
next Try It Out may not be necessary.

Now you will work through setting up the IDE as described in the prior list.

Try It Out Setting up the IDE for a Windows Application Project
You will be using the project created in the first Try It Out. Again, because you are practicing opening C#
Express and locating projects, close C# Express if it is opened. Now:

1. Open C# Express. The Start Page appears. This time, instead of using the New Project dialog
box, you will open the existing project you created.

2. You will see the file you want to locate in the Recent Project pane on the Start Page and will see
a hand cursor displayed when you placed over the file name, as shown in Figure 3-4.

Toolbox Solution ExplorerProperties Pane

33

Quick Start Creating Your First C# Express Windows Project

07_589555 ch03.qxd 12/29/05 8:32 PM Page 33

Figure 3-4

3. Select the project you want to use. The project is displayed again, with the settings as they were
in Figure 3-3. It’s time now to open the Properties pane.

4. Select View ➪ Properties, the Properties pane will now be displayed as shown in Figure 3-5.

34

Chapter 3

07_589555 ch03.qxd 12/29/05 8:32 PM Page 34

Figure 3-5

5. Place the mouse on the left side of the Solution Explorer so that the mouse changes to the two
arrows going up and down. See Figure 3-6.

35

Quick Start Creating Your First C# Express Windows Project

07_589555 ch03.qxd 12/29/05 8:32 PM Page 35

Figure 3-6

6. Press and hold the left mouse button, dragging the border of the pane to the left.

7. Release the mouse button when you can see all of the text in the Solution Explorer. Next it is
time to open and pin the Toolbox.

8. Place the cursor over the Toolbox tag, located on the left side of the IDE. The Toolbox pane
slides out.

9. Highlight the pin located next to Close button of the pane. In Figure 3-7, the pin is highlighted
and the Auto Hide text is displayed. If you click this button, the Toolbox pane remains open.

10. Click the auto hide pin.

You are now ready to work on the Windows application project.

Right now if you run this application, you will just get a blank form, which is not very exciting on the
surface. But a blank form in this context isn’t completely unexciting when you consider what has been
done. Despite being blank, C# Express has created a lot of Windows functionality — moving the form,
resizing the form, minimizing, maximizing, and so on.

In a few pages, you will add a couple of controls and display the result. But first take a look at what is
included when you created the form, and what is displayed in the Solution Explorer.

36

Chapter 3

07_589555 ch03.qxd 12/29/05 8:32 PM Page 36

Figure 3-7

Overview of the Solution Explorer
The Solution Explorer was discussed briefly in Chapter 1, “Starting Strong with Visual C# 2005 Express
Edition,” explaining that it is the pane in the C# Express IDE that helps you maintain your projects.

Project Elements Controlled Using the Solution Explorer
With the Solution Explorer, you will:

❑ View various files used in the project. Projects are made up of multiple types of files, with
extensions. The next section describes some of those types of files and their purposes. Besides
double-clicking on a file with the left mouse button to edit a file, you can right-click a file and
perform various tasks depending on the type of file.

❑ Use references. These references point to or include .NET assemblies, which are libraries of
code that can be used to accomplish the tasks in your application. References can also be made
to include other projects you have created and want to use in the current application. You will
learn more about .NET assemblies in the Chapter 4, “Introducing .NET.” You can see the refer-
ences set up by C# Express by default in Figure 3-9.

37

Quick Start Creating Your First C# Express Windows Project

07_589555 ch03.qxd 12/29/05 8:32 PM Page 37

Figure 3-8

Figure 3-9

❑ Use project properties. Properties describe different aspects, or features, of whatever object they
are on. For example, you can have properties that describe forms and controls, as explained fur-
ther in the section titled “Discussion about Properties,” later in this chapter. In the case of the

38

Chapter 3

07_589555 ch03.qxd 12/29/05 8:32 PM Page 38

project properties, various files are stored that describe various aspects of the project. The good
news is you don’t have to do anything with the files in the short term. Later on as you get more
advanced in your programming skills, you may have to but not for a while.

Files Used in Windows Application Projects
Depending on which kind of project you are working with, you will have different file types displayed
in the Solution Explorer. In the current type, you can see two files with the extension of .cs (C#). Notice
also that even though both have the extension of cs, they have different icons representing the type of
file they are.

You can create additional folders and store various types of the files, including graphic files or whatever
you need for your project. Which files are used will totally depend on your project. Also, under the cov-
ers there are folders and files that are used for the project that aren’t displayed by default. An example is
that forms consist of two files: the code file and the designer information file. You can see these files by
choosing Project ➪ Show All Files. A plus (+) symbol appears by the form files. If you click the plus sym-
bol, another file appears. In Figure 3-10 a couple of folders also are displayed.

Figure 3-10

For the most part, you really don’t need to see all the files necessary for the project, because C# Express
handles most of them for you and only has you deal with the necessary ones. But it is nice to know that
you have the capability to track additional files and check out the ones that are there in the Explorer.

Discussion about Properties
Before jumping into adding to the Windows project you created, we should discuss properties in greater
detail. As mentioned, properties, also called attributes, describe something about their object. A good
example is the properties of the form you created in the first Try It Out. You can see some of those prop-
erties listed in the property sheet in Figure 3-11.

You can set properties for various objects such as controls and forms during both design time, as shown
in Figure 3-11, and runtime, when the application is running. The various categories of properties for
forms and controls are detailed in Chapter 8 “Working with Forms and Controls.”

39

Quick Start Creating Your First C# Express Windows Project

07_589555 ch03.qxd 12/29/05 8:32 PM Page 39

Figure 3-11

Try It Out Change the Caption in a Form
You can see in Figure 3-11 that the value types in a Text property of a form is actually the caption dis-
played in the title bar of a form. Taking the project you create at the start of the chapter:

1. Double-click Form1.cs in the Solution Explorer if it is not already opened.

2. In the Properties pane, locate the Text property of the form.

3. Type My First Form in the Text property. You can see this in Figure 3-12.

Figure 3-12

40

Chapter 3

07_589555 ch03.qxd 12/29/05 8:32 PM Page 40

When you leave the property, you will see the caption change at the top of the form displayed in
the design mode.

4. Press F5 to run the application. C# Express tests and builds your application for you, then runs
it. The final form is shown in Figure 3-13.

Figure 3-13

Not very exciting, but hey, you’ve got to start somewhere. Now it is time to add some controls to the
form and make it a little more interesting. Click the Close button, which is the X in the top right corner
of the form.

Adding Controls to the Form
A form doesn’t do much good by itself without any controls to display or input data with. There are
hundreds of controls that you can use on forms. Some of the most common controls are shown in the fol-
lowing list. These controls also are used in the rest of this chapter.

❑ Text boxes. Used for enabling input or display of text.

❑ Labels. Used to display text.

❑ Buttons. Also called command buttons, code can be attached to these to perform tasks.

Adding controls to your form using the designer is as simple as dragging and dropping them onto the
form. Adding code to them and using events as described in Chapter 2 takes a little more work. Once
you have added controls to a form, you can resize, move, and modify their properties as needed. These
actions are discussed further in Chapter 8, “Working with Forms and Controls.”

Because the purpose of this chapter is to get you going with creating the form, let’s get busy. For the pur-
pose of the remainder of this chapter, you will be adding three text boxes and a command button. In a
separate Try It Out, you will then add code to the command button that will take the values entered into
the first two text boxes and display them in the third text box.

41

Quick Start Creating Your First C# Express Windows Project

07_589555 ch03.qxd 12/29/05 8:32 PM Page 41

Try It Out Adding Three Labels and Text Boxes, and a Button to a Form
Although this seems like an ambitious task, adding these controls is really simple. Using the form you
have been using this whole chapter:

1. Make sure that the Common Controls is the displayed category in the Toolbox by clicking the
minus symbols of the other categories of tools, if they are displayed.

2. Place the cursor over the Label control, displayed in the Toolbox, and hold down the left mouse
button.

3. Drag and drop the label onto the form by dragging the control from the Toolbox onto the form
and releasing the mouse button. You can see this in Figure 3-14, just before the mouse button is
released.

Once the mouse is released, the Label control is placed on the form in the location you put it in.

Figure 3-14

42

Chapter 3

07_589555 ch03.qxd 12/29/05 8:32 PM Page 42

4. Locate the Text property of the Label control you place on the form.

5. Type Value 1 for the Text property. If you press Enter or move out of the property, the text in
the label is updated, as shown in Figure 3-15.

6. Drag and drop a TextBox control using the steps just described for the Label control on
the form next to the Label control.

After you release the mouse button, you will then see the TextBox control shown in
Figure 3-16.

Figure 3-15

43

Quick Start Creating Your First C# Express Windows Project

07_589555 ch03.qxd 12/29/05 8:32 PM Page 43

Figure 3-16

7. Repeat Steps 2 through 6 for two more Label and TextBox controls, setting the Text property
for the Labels to “Value 2” and “Sum,” and arrange them as displayed in Figure 3-17.

Normally you would be changing the names of controls to be a little more meaningful, but since the idea
behind this chapter is to get you going quickly, I am holding off harping on that. This is discussed in
more detail in Chapter 8.

44

Chapter 3

07_589555 ch03.qxd 12/29/05 8:32 PM Page 44

Figure 3-17

8. Drag and drop a Button control from the Toolbox on the form beside the last TextBox control
you placed on the form.

9. Change the Text property of the button to be “Sum Values.” The Text property of the button is
actually the caption displayed on the button. You can see what the form now looks like in
Figure 3-18.

45

Quick Start Creating Your First C# Express Windows Project

07_589555 ch03.qxd 12/29/05 8:32 PM Page 45

Figure 3-18

Okay, you have now created a form and placed controls on it. If you press F5 at this point, you would
see the controls and could enter information into the three text boxes. You also could click the Sum
Values button. However, nothing would happen, because you haven’t told the computer, by using code,
to do anything. To do so, you will write C# in an event on the button.

Working with Code on an Event
Events and the coding of the events were discussed in the last chapter, but they were not actually
demonstrated. In this section you perform this task yourself. Although it sounds intimidating, it doesn’t
have to be. The list of events is discussed further in Chapter 8, but in this section you will use the Click
event of the button to write code that will add the values entered into the first two text boxes into the
third text box.

Note that no error trapping of any kind is covered in this chapter. This means if you type nonnumeric
values into your text boxes, or no values at all, errors will occur.

To add code to a default event of a control, you double-click the control in the designer. Most controls have
default events. These events are those that are most likely to be used. For buttons it is the Click event.

46

Chapter 3

07_589555 ch03.qxd 12/29/05 8:32 PM Page 46

After you double-click a button, you are taken into the code behind the form. You can see the code
behind Form1 in Figure 3-19.

The editor places you on the spot where you need to be. Form class modules and the actual code syntax
are discussed further in Chapter 8, but for now, focus on the lines that read:

private void button1_Click(object sender, EventArgs e)
{

}

C# Express wrote these lines of code, and additional code, so that you didn’t have to. When you write
C# commands, they are performed when the event, in this case the Click event, occurs. The commands
can be anything from displaying a simple message to performing a number of intricate tasks, depending
on your needs. In the case of the form you are working on, you will be adding the values entered into
the text boxes together.

Now, in C# you can’t just add two values together from text boxes. You need to convert the values,
stored in the Text property of the text boxes, to a numeric type value. To accomplish this, you use the
ToInt16() method of System.Convert .NET object. You then take the value returned from adding the
text boxes together and convert it back to a string.

Figure 3-19

47

Quick Start Creating Your First C# Express Windows Project

07_589555 ch03.qxd 12/29/05 8:32 PM Page 47

You may be thinking about throwing this book away reading this last paragraph, but don’t worry; it is
more complicated to describe what you are going to do than it is to just write out the line of code. The
line of code you use looks like this:

textBox3.Text =
Convert.ToString(Convert.ToInt16(textBox1.Text) +

Convert.ToInt16(textBox2.Text));

Again, please don’t sweat the actual code itself at this time. I will be discussing C# types and .NET
classes over the next few chapters. The point is to get you in and programming a Windows form.

One quick thing to note about this code is that you don’t have to worry about continuing a command on
more than one line. You just have to end your commands with a semicolon (;).

Try It Out Adding Event Code to a Button and Testing the Form
You now have all the pieces you need to complete this chapter’s task. You will add the code just dis-
played and run your new form.

1. Double-click the Button control. The editor opens, as shown back in Figure 3-20.

Figure 3-20

48

Chapter 3

07_589555 ch03.qxd 12/29/05 8:32 PM Page 48

2. Type the following command in between the open and close brackets {} of the button1_Click
method:

textBox3.Text =
Convert.ToString(Convert.ToInt16(textBox1.Text) +

Convert.ToInt16(textBox2.Text));

The editor then looks as shown in Figure 3-20.

Okay, for the purposes of this task, you are done designing the form. Now you just need to test
it out.

3. Press F5 to run the application.

4. Type numbers in the Value text boxes. For the purposes of this example, the values of 3 and 4
were entered into Value 1 and Value 2, respectively.

5. Click the Sum Values button. The sum of the two values is displayed in the third text box, as
shown in Figure 3-21.

Figure 3-21

If for some reason your application does not build or run as it should, check the code to make sure it is
typed exactly as it is in the example here. Next, make sure the Name properties of the fields are as they
are in the example: textBox1, textBox2, and textBox3.

Summary
There are a number of types of projects you can create using C# Express. Two of the major types are con-
sole and Windows application project types. The main difference between the two is that the console
applications don’t usually include forms and other user interfaces. They are used for utility and system-
level applications. Windows applications can include everything from database applications to video
games.

49

Quick Start Creating Your First C# Express Windows Project

07_589555 ch03.qxd 12/29/05 8:32 PM Page 49

The panes in the C# Express IDE can be rearranged as desired depending on what you are trying to accom-
plish and the type of project you are working on. In this chapter you saw how to create a Windows applica-
tion including adding text boxes and buttons. In addition to adding the controls themselves, you saw how
to create code that can be executed behind them at runtime.

Exercises
1. Can you include a Windows form in a Console application?

2. What is the extension of the file that is used for a Windows form?

3. What pane in the IDE contains the various controls used on a form?

4. Height, Width, and Text are _______ of a form.

5. What is the property that displays a caption on a button?

50

Chapter 3

07_589555 ch03.qxd 12/29/05 8:32 PM Page 50

4
Introducing .NET

After programming for almost 20 years, I can honestly say that while not the easiest programming
environment to work with, .NET is by far one of the most complete. Microsoft went to a great deal
of effort to try and give developers both the flexibility they need along with the power and secu-
rity. While this is great for software developers that have been programming for a while, it can be
very intimidating for new developers.

As a trainer I have seen many a glazed eye and look of panic when talking about discussing vari-
ous elements of .NET. The good news is that those glazed eye turn into a look of excitement as the
people see both the potential and that it not as intimidating as it first seems.

The goal of this chapter is to lay out the different aspects of programming using .NET in such a
way that you can see logically how to use various features for your own purposes. This chapter
does the following:

❑ Introduces the .NET Framework.

❑ Explains how .NET assemblies, namespaces, and types work.

❑ Discusses some of the .NET namespaces and types that are useful for your own
programming.

❑ Shows how to include .NET namespaces in your programs.

Introduction to .NET Framework
My family just celebrated 10 years of being in our current house that we had custom-built. Like
any homeowner-to-be, I was on-site just about every day to make sure that the contractor had all
my expertise for the building. Okay, I mainly just got underfoot, but the point is I saw the frame-
work that made up the house.

Much like the core of a well-built house is built from a strong foundation and well-formed frame,
the base from which the Microsoft .NET Framework consists of two main elements: Common
Language Runtime (CLR) and the .NET Framework Class Library. These two elements handle a

08_589555 ch04.qxd 12/29/05 8:31 PM Page 51

lot of work for developers; among other things, the CLR manages memory and is a language-neutral
environment.

The .NET Framework Class Library makes for just about unlimited expandability for your application.
You can see how these elements fit together in Figure 4-1.

Figure 4-1

C# is used in all of the blocks of the top layer. The various blocks on top all use the same types from the
blocks below, with some differences regarding whether or not you are working with the Web. But the
great thing is that you don’t have to learn all new types when working in one or the other. You can use
C#, or whatever language you choose, and use the same types and their properties and methods for the
data and Framework classes.

Like much of C# Express, the Microsoft .NET Framework manages the majority of the functionality
that has been discussed in the chapter thus far. Don’t think that you will have to be writing code to get
every part of the Framework working; it has been done for you.

There are a number of reasons for using the .NET Framework for a development platform. Namely, the
.NET Framework:

❑ Guarantees the safe execution of code, including code created by unknown or semi-trusted
third parties. This is where the term managed code comes from, because the applications have to
meet security standards and are managed just for that very purpose.

❑ Enables developers to work in a consistent programming environment whether creating
applications for desktops or the Internet. This ensures that although there are techniques that
vary between Web and desktop applications, you can use the same languages, such as C#.

❑ Builds all communication on industry standards to ensure that code based on the .NET
Framework can integrate with any other code. .NET uses XML extensively, as well as other
communication protocols such as SOAP (Simplified Object Application Programming), which
are both industry standards.

❑ Minimizes software deployment and versioning conflicts. Also called DLL hell, these conflicts
occurred frequently when you were developing in prior platforms such as Visual Basic and

Common Language Runtime

Basic Framework Classes

Data and XML Classes

XML Web
Services

Web
Forms

ASP. NET

Windows
Forms

52

Chapter 4

08_589555 ch04.qxd 12/29/05 8:31 PM Page 52

using ActiveX controls. A lot of times when you installed new versions of your applications,
controls would conflict and not work.

❑ Eliminates performance problems of scripted or interpreted environments. Everything
is compiled into a common language that the various parts of the platform are designed to
work with.

Common Language Runtime
Common Language Runtime is a runtime engine that takes the various languages such as Visual Basic,
.NET, and C# and compiles them into the same common language used when the applications are exe-
cuted. This means that all the languages can use the same classes provided by the .NET Framework
Class Library.

The CLR is extremely convenient and powerful in that it really doesn’t matter which language you write
in, because you can use the same objects and it all compiles down to the same efficient code.

.NET Framework Class Library
The .NET Framework Class Library is made up of various namespaces. Namespaces are actually collec-
tions of types, logically organized. This enables you to have multiple versions of types with the same
name but in different namespaces, thereby avoiding conflicts.

Just as with a library you have collected in your home of useful books, the class library is a set of types
that not only make up the .NET Framework itself, but also are available to developers for their use.

Another big benefit of using the .NET Framework Class Library is to be able to use the classes in your
applications consistently no matter whether you are using C# or Visual Basic .NET, Windows, or Web
forms. Namespaces can also contain other namespaces in a hierarchical way. By creating sub-name-
spaces, you can categorize your types for use at different times.

The best way to understand the .NET Framework Class Library is to take a look at some of the name-
spaces in it. Some of these namespaces are shown in the following table:

Namespace Description

System Main system namespace that is broken into many categories.

System.Data Makes up the classes used for ADO.NET, and overall data manipu-
lation of just about any kind. Sub-namespaces of the System.Data
include System.Data.SqlClient and System.Data.OleDB.

System.Drawing Used for drawing shapes and objects in your applications.

System.Windows.Forms Namespaces and classes for creating Windows forms applications.

When you create a .NET application, C# Express creates references to different namespaces, based on
what kind of project you are creating. An example of references created in a Windows application type
.NET project is shown in Figure 4-2.

53

Introducing .NET

08_589555 ch04.qxd 12/29/05 8:31 PM Page 53

Figure 4-2

To get more comfortable with namespaces and how they work, you need to use them yourself. To do
that, you will want to create another Windows project to work with.

Try It Out Creating the Initial Project
While in C# Express:

1. Choose Project... from the File ➪ New menu task. The New Project dialog box appears.

2. Highlight Windows Application.

3. In the Name property, type in the name you want to call the project. You can see that
Chapter4CheckoutNamespaces was the title given to this project in Figure 4-3.

4. Click OK. C# Express creates the project. The initial Windows form appears.

5. Click the plus sign by the References node in the Solution Explorer; you now see all the refer-
ences to namespaces that are set by default (see Figure 4-4).

Figure 4-3

54

Chapter 4

08_589555 ch04.qxd 12/29/05 8:31 PM Page 54

Figure 4-4

While it is great to see the namespaces listed for your project, it is even better if you know what you can
do with them.

Working with .NET Namespaces
While some programming environments let you use libraries of code to enhance your programming,
few actually use those libraries themselves. Every object that is created within C# Express uses name-
spaces. Even the form in the form designer has been created using .NET namespaces, but it is main-
tained by C# Express for you, so you can just drag and drop nicely using the editor. While I could have
you open the file that makes up the design portion of the form, it wouldn’t really help you get used to
working with .NET namespaces.

Object Browser: Tool of the Namespace Trade
One of the tools worthwhile to look at when you are learning about namespaces is the Object Browser.
With the Object Browser you can search through and locate the syntax for various classes you want to
use. Once you locate the class in the namespace, you can press F1 and get help on it if necessary.

55

Introducing .NET

08_589555 ch04.qxd 12/29/05 8:31 PM Page 55

The Object Browser is a great tool when you just want to look through a namespace to get an idea of
what is included.

Try It Out Using the Object Browser
The best way to get comfortable with the Object Browser is to go ahead and use it. For this Try It Out,
you will open the Object Browser and search for the MessageBox class. So, in the project you created
earlier in this chapter:

1. Choose Object Browser from the View ➪ Other Windows menu choice, as shown in Figure 4-5.

Once in the Object Browser, you see all of the namespaces that are referenced in the current pro-
ject. You even see an entry for the project itself, as shown in Figure 4-6.

2. In the entry that says <Search>, type in the term MessageBox, then press Enter. You will now
see a list of classes that have the word MessageBox in them.

Figure 4-5

56

Chapter 4

08_589555 ch04.qxd 12/29/05 8:31 PM Page 56

Figure 4-6

3. Highlight the entry that reads System.Windows.Form.MessageBox. All the methods of this class
appear, in this case just the Show methods, as shown in Figure 4-7.

4. Highlight any of the entries, and press F1. You will then see the help for that particular method,
as shown for the Show method in Figure 4-8.

Many of the methods and properties of classes can have more than one way of being called or set. This is
called “overloading.” You can create your own classes that use overloading as well.

You can now close both the help screen and the Object Browser by clicking on the red X in the code
of each.

There are a number of ways to use the .NET namespaces within your applications. One is by typing the
full name of the namespace down to the class or method (action) you want use with the namespace. This
is called using the fully qualified namespace.

57

Introducing .NET

08_589555 ch04.qxd 12/29/05 8:31 PM Page 57

Figure 4-7

Figure 4-8

58

Chapter 4

08_589555 ch04.qxd 12/29/05 8:31 PM Page 58

Supplying the Fully Qualified Namespace
This is a fancy term for what is really just performing more work than necessary. For example, if you
want to use the MessageBox() method, which is in the System namespace, you would then use the fol-
lowing syntax:

System.Windows.Forms.MessageBox.Show(“Hey There”);

One of the nice features of C# Express and other Microsoft editors is that they provide a help feature
called IntelliSense. While it is a dumb name, it is a great feature. IntelliSense actually builds your com-
mands as you move down the qualified namespace, and then lets you know the possible arguments that
can be passed to the method.

To give you a bit of experience working with fully qualified namespaces and even with using the
IntelliSense feature, perform this next Try It Out.

Try It Out Calling the MessageBox.Show() Method Using the Fully Qualified
Namespace

Using the project you created in the first Try It Out of this chapter:

1. Double-click on the Form1.cs. The code for Form1 appears, as shown in Figure 4-9.

Figure 4-9

59

Introducing .NET

08_589555 ch04.qxd 12/29/05 8:31 PM Page 59

2. In between the open and close curly brackets, under the lines that read

private void Form1_Load(object sender, EventArgs e)
{

type the following:

System.Windows.Forms.messageb

As you move through each segment of classes, the editor capitalizes the name and then gives a
list for the next segment. You can see this in Figure 4-10.

IntelliSense helps a great deal as you are writing out the statements or are not sure the path or
syntax. To go to the next segment, press either the period or parenthesis as you get toward the
end of the statement.

If you misspell or don’t press the period to complete the segment of the command, it will not get capital-
ized and will cause problems. Remember that C# is a case-sensitive language. If this happens, either
capitalize the command yourself or erase the segment and start over.

3. Complete the rest of the command so that it reads

System.Windows.Forms.MessageBox.Show(“Hey There”);

The screen now appears as shown in Figure 4-11.

Figure 4-10

60

Chapter 4

08_589555 ch04.qxd 12/29/05 8:31 PM Page 60

Figure 4-11

Using the fully qualified namespace is good when you have classes or methods that are similarly named.
However, it can be somewhat of a hassle to have to keep typing out the full name, even using IntelliSense.
.NET provides another way to specify the full path once in the class you are currently working in: with the
Using directive.

The program you just created displays a message box as the form is opened. To build and test this appli-
cation, press F5.

The Using Directive
Instead of opening the form design file, I will show how to use the namespaces by opening the code
portion of the form and showing you how .NET “hooks” in the namespaces for you. For example, if
you open code for the form1 in your new project, you will see a region, also called code blocks, at the
top made up of Using directives By default, you will see a list of namespaces that are included in each
Windows form created. You can see this for the current project in Figure 4-12.

61

Introducing .NET

08_589555 ch04.qxd 12/29/05 8:31 PM Page 61

Figure 4-12

By clicking the plus/minus symbols, you are either expanding or collapsing the region. There is quite a bit
of code that is created and then placed in regions using both #region . . . #endregion statements
and now automatically by the C# Express editor for you based on the code block being created. If you go
into some of these regions, be careful, because the majority of the regions are code written by C# Express
and should not be changed.

With the Using directive, you are telling C# that you are planning on using the specified namespace so
you don’t have to type full syntax out. Remember, the namespaces shown in Figure 4-12 are there by
default. As you get more advanced in your writing of code, you will add your own namespaces that you
will find useful.

A cool tip if you are going to be using a class from a namespace specified in the Using Directives region
is that you can press Ctrl+Space, and a list of available classes and methods is displayed using
IntelliSense.

62

Chapter 4

08_589555 ch04.qxd 12/29/05 8:31 PM Page 62

Try It Out Calling the MessageBox.Show() Method with the Using Directive
Using the project you created in the previous Try It Out, erase the fully qualified MessageBox.Show
command you created. With the current line in between the curly brackets, again:

1. Press Ctrl+Space. The IntelliSense list appears.

2. Type:

Messageb

The list then goes to the MessageBox class, as shown in Figure 4-13.

3. Finish the statement so it reads

MessageBox.Show(“Hey There Again”);

This is shown in Figure 4-14.

Figure 4-13

63

Introducing .NET

08_589555 ch04.qxd 12/29/05 8:31 PM Page 63

Figure 4-14

And there you go. While it is very convenient to not have to type out the fully qualified namespace, it
does help a great deal with those methods that are named the same in different namespaces. You will
have plenty of chances to use namespaces as you progress through the rest of the book.

Summary
The .NET Framework combines power and flexibility and also takes some of the hassles out of program-
ming for a platform that can work on different operating systems and even the desktop or Internet (Web)
development. There are a number of reasons for using .NET, including guaranteeing the safe execution
of code, helping developers to work in a consistent programming environment, and building communi-
cation on industry standards, among others.

Namespaces provide flexibility by supplying a number of utilities that not only make up .NET itself but
also enable you to put them directly into your code. Tools are supplied for working with namespaces
and even let you create your own namespaces to further enhance your applications.

64

Chapter 4

08_589555 ch04.qxd 12/29/05 8:31 PM Page 64

Exercises
1. Name the two main parts of the .NET Framework.

2. What is the category in the Solution Explorer that shows the list of namespaces being used?

3. What is the feature lists parts of namespaces as you are typing the statements in code?

4. You can use _____ _____ to look at the various namespaces, classes, and methods.

5. What are the two ways of using namespaces in code?

65

Introducing .NET

08_589555 ch04.qxd 12/29/05 8:31 PM Page 65

08_589555 ch04.qxd 12/29/05 8:31 PM Page 66

5
Getting into C# Types

Just about every programming language uses variables for storing information temporally while
the program is running. To provide better control, C# requires you to specify what type of infor-
mation you plan on storing in the variable. This not only includes standard type of data such as
strings (text) and various types of numbers but also various types of objects available in the .NET
Class Library. How you use a variable depends on what type of variable it is.

Once variables have been declared, you can assign values and manipulate them using various
techniques. They can then be used for testing various conditions, storing values into databases,
and displaying them in your application. Just about any application you write will use variables in
one of these ways, and many more.

Constants are used for specifying a value once in a procedure or application, and then the constant
is used throughout the code. To explain about all variable and constant features, this chapter:

❑ Discusses further what variables are and how they are used.

❑ Shows how to declare a variable and assign values to it.

❑ Demonstrates how to Manipulates information in variables.

❑ Shows how to use the C# Express editor to display variables.

❑ Shows how to write variables to the console using the Console.Writeln() method.

What Are Variables and Constants?
As mentioned in the introduction to the chapter, most programming languages use variables and
constants to work with information in memory. There are two types of variables:

09_589555 ch05.qxd 12/29/05 8:27 PM Page 67

❑ Those that are used for storing pieces of information in memory, thus making a copy of the data
that is independent of the original data. These types of data are standard types such as strings
and numbers.

❑ Those that are really references, or point to existing or new objects created from classes, such as
the various .NET library classes discussed in Chapter 4.

Constants are used when you have a value throughout your application or procedure that you are not
going to be changing. You will read more about constants later in the chapter in the section titled
“Using C# Constants.”

Declaring and Assigning C# Variables
Unlike other languages, C# is very strict when you are declaring variables. This means that you need to
know and declare your variables as specific types. While there are ways around this, it is a good idea to
get used to using the strict or explicit way. An example follows, showing how to declare an integer type
variable named intValue1:

int intValue1;

The various C# types will be discussed shortly in the section called “Standard C# Types.” For now, just
bear with me as I present different types.

Once you have declared your variable, .NET reserves a spot in memory for that variable, but it still has
no value. In fact, if you were to create a project with just the declaration of the variable as just shown,
and you try to display or use the variable without assigning it a value, you would get an error from C#
Express when you attempt to build the project. Take time to perform this Try It Out to create a Windows
application for this chapter and to test the situation just presented.

Try It Out Creating a Windows Application and Declaring a Variable
For this first Try It Out, you create a Windows application that is a switchboard for trying out the differ-
ent examples presented in this chapter. Switchboards are discussed further in Chapter 8, “Working with
Forms and Controls,” but for now know they are buttons on a form that launch routines that you cre-
ated. So, after starting up C# Express:

1. Choose Project... from the File ➪ New menu.

2. Select the Windows Application template, and type in the name you want to call the project. For
the example, Chapter 5 was used, as shown in Figure 5-1.

3. Click OK to create the project. The form is displayed by default.

4. Drag and drop a button control onto the form as shown in Chapter 3, “Quick Start Creating
Your First C# Express Windows Project,” in the section titled “Adding Controls to the Form.”

5. Set the Text property to Variables.

6. Set the Name property to btnVariables, as shown in Figure 5-2.

68

Chapter 5

09_589555 ch05.qxd 12/29/05 8:27 PM Page 68

Figure 5-1

Figure 5-2

69

Getting into C# Types

09_589555 ch05.qxd 12/29/05 8:27 PM Page 69

7. Double-click the btnVariables button. The code for the form is displayed, and you see Type the
following lines of code in between the open and close curly brackets of the main procedure:

int intValue1;
MessageBox.Show(intValue1.ToString());

The ToString() method of intValue1 is used to convert the value passed to the MessageBox.Show
method to a string value. Converting between C# types is discussed further in the section called
“Converting between Variable Types,” later in this chapter.

8. Press F5 to run the application. A build error occurs. C# Express lists them nicely at the bottom
of the IDE, as shown in Figure 5-3.

Figure 5-3

I am going to leave you hanging for a moment with the error in place. The next section discusses assign-
ment of variables, which will provide the information you need to correct the error.

Simple Assignment of Variables
The error displayed in Figure 5-3 is what is returned when you use a variable without assigning a value
to it first. To assign a value, use the equal sign as the operator:

intValue1 = 3;

When assigning values, you can perform operations at the same time such as:

intValue1 = 3 + 5;

70

Chapter 5

09_589555 ch05.qxd 12/29/05 8:27 PM Page 70

Assigning Variables with the Declaration
You also can also assign a value to the variable at the same time you are declaring. For example:

int intValue1 = 3;
int intValue2 = intValue1 * 5;

You just need to make sure you declare the variables that you are using in each of the statements. In the
last example, you would want to make sure that intValue1 was declared and the variable’s value, 3 in
this case, was assigned before using it in the line of code assigning it to intValue2.

You also can perform operations using other variables:

int intValue1;
int intValue2;

intValue1 = 3;
intValue2 = intValue1 * 5;

Besides assigning values to variables in your code, you can take values from text boxes and assign them
to a variable. This can take a bit more work, as in more code, and is explained in a section called
“Converting between Variable Types,” later in this chapter.

To correct the error caused by the first Try It Out, change the declaration statement to:

int intValue1 = 0;

Try It Out Assigning Variables
In this Try It Out, you declare and assign a couple of variables, one assigning the variable in the declara-
tion, the other using a separate line of code.

1. Drag and drop another button onto the form created in the last Try It Out.

2. Name the button as desired, and specify the Text property.

3. Double-click the button. C# Express creates a routine for the Click event, and opens the
code file.

4. Add the following code between the opening and closing curly brackets:

int intValue1 = 3;
int intValue2;

intValue2 = intValue1 * 5;

MessageBox.Show(intValue2.ToString());

The editor code portion now looks Figure 5-4.

71

Getting into C# Types

09_589555 ch05.qxd 12/29/05 8:27 PM Page 71

Figure 5-4

5. Press F5 to build and run the application.

6. Click the button you created for assigning variables. The message box in Figure 5-5 appears.

Figure 5-5

Besides showing how to assign values to variables, the following line of code performs a C# arithmetic
operation when assigning values to intValue2:

intValue2 = intValue1 * 5;

C# Arithmetic Operations
The operations you have the program perform depend on what tasks you are trying to accomplish.
Following is a list of operators you can use for arithmetic operations:

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder of a division performed, known as the modulus

++ Incrementing the value of a variable by 1

-- Decrementing the variable of a variable by 1

72

Chapter 5

09_589555 ch05.qxd 12/29/05 8:27 PM Page 72

Another thing to keep in mind with operations: Just as with high school algebra, you can use parenthe-
ses to perform operations in the specific order you want. This means that the following line of code

intValue1 = (3+6) * 5;

assigns 40 to intValue1. That is, 3 plus 6 equals 8, and 8 multiplied by 5 equals 40.

Standard C# Types
Thus far, you have seen some examples in the chapter of a couple of data types that you can use when
declaring variables. The data types discussed have been standard C# types. There are a number of stan-
dard C# types you can use that will hold various types of data. Following is a list of some of the more
commonly used C# types with the equivalent .NET type.

Type .NET Data Type Description

bool System.Boolean True/false values

byte System.Byte 1 or 0 values

char System.Char Single characters

decimal System.Decimal Decimal values

double System.Double Large floating-point number

float System.Single Small floating-point number

int System.Int32 Integer value

long System.Int64 Large integer value

object System.Object Generic object that can hold other types

short System.Int16 Short integer value

string System.String Array of characters

You will be using some of these types throughout the rest of this chapter and the rest of the book.

Working with C# String Types
Strings can be manipulated similarly to numeric values but are handled differently by C#. Strings are
actually multiple characters strung together.

The characters strung together are actually called an array. You can have arrays of various types of
variables.

While you use the + (plus symbol) to concatenate (add) string values together, there are other methods
on string type variables. Following are some of the methods you can use with string data types:

73

Getting into C# Types

09_589555 ch05.qxd 12/29/05 8:27 PM Page 73

Method Description

Compare Compares two specified strings.

Contains Returns a boolean value indicating whether the specified string occurs
within this instance.

Copy Creates a new instance of a string.

IndexOf Reports the index of the first occurrence of a string, or one or more
characters, within this instance.

Insert Inserts a specified instance of a string at a specified index position in
the instance.

IsNullOrEmpty Indicates whether or not the specified string is null or an empty string.

LastIndexOf Reports the index position of the last occurrence of a specified charac-
ter or string within the current instance.

PadLeft Right-aligns the characters in this instance, padding the left with
spaces or a specified character for a specified length.

PadRight Left-aligns the characters in this string, padding the right with spaces
or a specified character for a specified length.

Remove Deletes a specified number of characters from this instance.

Replace Replaces all occurrences of a specified character or string in this
instance with another specified character or string.

Split Returns a string array containing the substrings in this instance that
are delimited by elements of a specified character or string array.

StartsWith Determines whether the beginning of an instance of a string matches a
specified string.

Substring Retrieves a substring from this instance.

ToUpper Returns a copy of a string converted to uppercase.

Trim Removes all occurrences of a set of specified characters from the
beginning and end of a string.

TrimEnd Removes all occurrences of a set of characters specified in a string from
the end of this instance.

TrimStart Removes all occurrences of a set of characters specified in a string from
the beginning of this instance.

Now it’s time to put some of your knowledge about strings to use. To accomplish this, perform the fol-
lowing Try It Out.

74

Chapter 5

09_589555 ch05.qxd 12/29/05 8:27 PM Page 74

Try It Out Manipulating Strings
For this Try It Out, you will use two of the methods displayed in the preceding table: IndexOf and
Substring.

1. To start, assign the name “Sam Spade” to a variable called strWholeName:

string strWholeName = “Sam Spade”;

2. Next, use the IndexOf method to locate the space in between first and last name in the original
string:

intSpaceLoc = strWholeName.IndexOf(“ “);

3. Taking the value returned by the IndexOf method, use the Substring method to return the
first name and then the last name:

strFirstName = strWholeName.Substring(0, intSpaceLoc);

strLastName = strWholeName.Substring(intSpaceLoc+1);

As with other methods and properties, the Substring method is overloaded. This means you can call
the method passing different arguments. For the first name, you pass the starting point (0) and the
length of the string you want to return. For the last name, just the starting point is passed, and the
Substring method returns the rest of the string. So, to get busy:

4. Drag and drop another button onto the form created for this chapter.

5. Name the button as desired, and specify the Text property. For the purposes of this Try It Out,
the button was named btnStringVariables, and the Text property is set to String Variables.

6. Double-click the button. C# Express creates a routine for the Click event and opens the
code file.

7. Add the following code between the opening and closing curly brackets:

string strWholeName = “Sam Spade”;
int intSpaceLoc;
string strFirstName;
string strLastName;

// The index of the space in the name
intSpaceLoc = strWholeName.IndexOf(“ “);

// Using the location of the space, grab the first and last name
strFirstName = strWholeName.Substring(0, intSpaceLoc);
strLastName = strWholeName.Substring(intSpaceLoc+1);

// Display the first and last name
MessageBox.Show(“The first name is: “ + strFirstName +

“\nThe last name is: “ + strLastName);

75

Getting into C# Types

09_589555 ch05.qxd 12/29/05 8:27 PM Page 75

Besides the comments, denoted by the double backslash, notice the literal (meaning the actual
characters) “\n” added to the MessageBox.Show line of code adds a carriage return line feed into
the string displayed.

After you add the code in Step 4, the editor looks as shown in Figure 5-6.

Figure 5-6

8. Press F5 to build and run your application. If you get errors, double-check your code against
Figure 5-6. When running correctly, the message in Figure 5-7 appears.

Figure 5-7

Throughout this chapter, you have been using variables without paying attention to why you are nam-
ing them how you are. This next section discusses various ways of naming variables.

Naming C# Variables
One consideration when using variables is how to name them. When they begin developing, some peo-
ple tend to use the shortest variable names they can. For example, if they are declaring a variable that
stores the last name of a person, they would type

string ln;

This last line of code isn’t very easy to read, is it? I don’t know about you, but if I came in after the devel-
oper who used the last line of code, I would have a hard time working on the developer’s code. And
even if I wrote the code, I would be hard-pressed to remember what the variable was for a month later.

76

Chapter 5

09_589555 ch05.qxd 12/29/05 8:27 PM Page 76

Another naming standard is to type the name of what the developer plans on storing in the variable.
For example, for a string variable storing the last name of a person in it, the developer would use the
following:

string lastname;

A number of standards are used for naming variables in C# and other programming languages. A couple
of common standards used for .NET development are as follows:

❑ Camel notation. Takes the first word and displays it using lowercase and then uses proper case
on the second part of the variable name. For example, say you have a variable that stores a per-
son’s last name. You would declare and name the variable like this:

string lastName;

❑ Hungarian notation. In this naming standard, you place the type of data you are using for the
variable as the prefix for the variable name. The rest of the name is then typed in proper case.
This is the version I tend to use, because I like being able to see what type of data I am working
with. With this notation, the previous example would look like this:

string strLastName;

To me, this last notation makes the most sense, and, again, it is the one I use for most of my programming.

When you are working on other people’s systems, you will need to use whatever naming standard they
use, if they use one at all. Make sure that if they don’t have one, you recommend they adopt one.

For additional information of Microsoft’s recommendation for naming standards, check out the MSDN
article located at http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cpgenref/html/cpconnamingguidelines.asp.

Converting between Variable Types
There will be times when you need to take one type of data and convert it to another. A good example
is taking a numeric value and displaying it in a message box. To do this, you can use the ToString()
method, which each object and data type have. This is the most common type of conversion, and it is
easily accomplished, as shown here in the line of code from the first Try It Out:

MessageBox.Show(intValue2.ToString());

However, at times you will want to convert to other C# types besides strings. To accomplish this, you
can use a few different methods, two of which are discussed here. Based on which method you use, the
data is converted differently. The first method is to convert the expression using the type you want to
convert to. For example, if you want to convert a value to an integer, you would use the syntax of (int)
in the assignment of the expression. But if you type the following:

double dblValue = 2.7;
int intValueTotal1;

intValueTotal1 = (int) dblValue;

77

Getting into C# Types

09_589555 ch05.qxd 12/29/05 8:27 PM Page 77

the answer in intValueTotal1 would be 2. That’s right, the value is truncated. If you want to make
sure that the value is rounded correctly, you should use the Covert class. The Convert class has various
methods to covert pass values to the specified type. For example:

intValueTotal2 = Convert.ToInt32(dblValue);

In this case, the value in intValueTotal2 would be 3, since it would be rounded up.

Try It Out Converting Values between C# Types
Using the form created earlier in the chapter:

1. Drag and drop another button onto the form.

2. Name the button as desired, and specify the Caption property. For the purposes of this Try It
Out, the button was named btnConvertingTypes, and the Caption property is set to
Converting Types.

3. Double-click the button. C# Express creates a routine for the click event and open the code file.

4. Add the following code between the opening and closing curly brackets:

double dblValue = 2.7;
int intValueTotal1;
int intValueTotal2;

// First way of converting by casting the value to convert.
intValueTotal1 = (int) dblValue;

// Second way is to use the Convert classes methods.
intValueTotal2 = Convert.ToInt32(dblValue);

The code editor appears, as shown in Figure 5-8.

Figure 5-8

78

Chapter 5

09_589555 ch05.qxd 12/29/05 8:27 PM Page 78

As you type the Convert object, you will see all the methods available for the various types to convert
to. When the code is run, the first message box displays the value in intValueTotal1, and the second
the convert value in intValueTotal2.

Enumerations
Enumerations are a type of variable that can be used to reflect various values. You have seen enumera-
tions quite a bit in this book, mainly when using a class such as MessageBox. When you call the Show
method of the MessageBox class, you can pass an argument to the method. This is also very useful when
you are passing an argument to your own procedure and you want to limit the values sent. For example,
say you want to create an enumeration called intMonths. In this variable, you create enumerators for
each month in a year. The declaration for such an enumeration would look like the following:

enum Months
{

January, February, March,
April, May, June, July, August,
September, October, November, December

};

The values are actually integer values representing starting the value 1. When you are using the enumer-
ation in your code, you can type the name of the base name, such as Months, and see the list of possible
values. You can see this in Figure 5-9.

Figure 5-9

79

Getting into C# Types

09_589555 ch05.qxd 12/29/05 8:27 PM Page 79

Using C# Constants
Constants are different from variables in that you will declare and assign their values once in a module
or namespace. They are useful when you use a value that may mean little when viewed as a number but
makes perfect sense as a label. For example, if you were creating a recipe where the standard heat for the
ingredients is 450°, you could create a constant by using the const statement:

const string BakeTemp = “450°”;

private void btnConstants_Click(object sender, EventArgs e)
{

string strMessage = “The temperature should be at: “ + BakeTemp;

MessageBox.Show(strMessage);

}

Now you could use the const throughout the form, and then if you had to change it, you change it at
the declaration line. When the code is compiled and built, C# Express takes the label and replaces it with
the value throughout the application.

Summary
Wow, this was a busy chapter. You have been shown how, as with other programming languages, C#
provides the ability to store and manipulate temporary values in memory. After storing the values and
performing the required tasks with the data, you can throw the values away, record them to disk using
ADO.NET with XML or other means, or display them on a form. C# requires variables to be strictly
typed when declaring them, and if you want to use the values with other types, you must convert them
using the classes and methods provided by .NET.

In this chapter, you saw how to declare and assign values to variables. You also read how to use various
operators to manipulate variables. Next, constants were discussed, including how to declare and assign
values to them and what purposes they serve within applications. You saw how to convert variables
between the different standard types. Finally, you saw how to use const to make your application easier
to read and maintain.

Exercises
1. What is the difference between variables and constants?

2. How do you add a value to an existing variable?

3. Multiply the value in intValue1 by 10 and assign the answer to a variable called intAnswer.

4. What is the command used to convert a C# type of double to int?

5. Declare the variable named intMonth and assign it the value 10 in a single line.

80

Chapter 5

09_589555 ch05.qxd 12/29/05 8:27 PM Page 80

6
Debugging Applications

in C# Express

One of the most important things in any programming language and environment is providing
the ability to find errors, also called bugs, in your programs. In C# it is no different, since there are
different types of errors that can occur in programming C#. When working on locating and fixing
the bugs, you are “debugging” your application.

But where does the term “bug” originate? The most common story, though one that is disputed
by some, is that in one of the original computers, the Mark I, the programmers were having a hard
time with the system when they found out what the problem was. It was, literally, a bug — that is,
a moth that was caught inside the system. From there on whenever a problem occurred, the pro-
grammers said there was a bug in the system.

C# Express provides various tools to help you debug your applications, including the ability to
stop the application, putting it into break mode, which temporarily halts the execution of the pro-
gram, and use some of its tools. Which tool you use to debug your application depends on the
bug. Some tools are used interactively, and some display information that can be used to correct
errors within your application. Learning which tools to use can save you hours of time debugging.

In this chapter, you will see examples of the various types of errors and how to debug them within
your applications before deploying (releasing for production) them. The chapter includes the fol-
lowing topics:

❑ What debugging is

❑ An overview of various debugging tools inside C# Express

❑ Working with breakpoints and working with data at break time

❑ Utilizing watch points

❑ Looking at the edit and continue feature

❑ Various tools for stepping through code

10_589555 ch06.qxd 12/29/05 8:25 PM Page 81

What is Debugging in C# Express?
Debugging is how you find errors and mistakes in your code. Perhaps you forgot to declare a variable,
and then you must fix the resulting errors and mistakes, if possible. If you didn’t have the ability to
locate errors, you wouldn’t be able to create very stable applications — if they ran at all. C# Express
includes many tools for debugging your applications that make life much easier. Before jumping into
those features, I want to discuss some of the types of errors that can occur in your applications.

Types of Errors That Can Occur in Your Applications
There are actually three types of errors that can occur in your applications:

❑ Syntax errors. The most basic type error, a syntax error is an error in the language, like a miss-
ing curly bracket (used to begin and end code blocks) or an incorrectly formatted line. It’s basi-
cally something that the compiler can’t understand. These errors will pretty much always be
displayed in the Error List window, which is discussed in the next section.

❑ Semantic/logical errors. Semantic/logical errors are harder to find, because they won’t get read
as an error. This is because they aren’t a mistake in the language, but rather something that
means something other than what you intended, or are caused by data the user entered. You
will see these errors when you run your program, but you won’t necessarily know what is
wrong or where it is in the code.

❑ Exception errors. There are some errors that occur during runtime that you can’t get rid of.
These errors are called exceptions, and while they can be trapped and programmed for, because
they occur at runtime in the “real world,” they will occur regardless of what you do to plan for
them. Logical and semantical errors sometimes cause exceptions because the logic fails due to
bad data or some other cause. Exceptions and handling them is discussed in Chapter 7.

C# Express Debugging Features: Tools of the Trade
C# Express excels when it comes to providing the tools necessary to help you debug your applications.
Depending on which error you are debugging, you will be able to the advantage of the different features
included in C# Express. The following sections outline these features.

Using the Error List When Building
The error list is one of the simplest debugging tools, but it is undoubtedly the most important. The error
list shows all the errors in the code that prevented the program from running. As mentioned, these are
usually syntax errors. The error list also will alert you to various gaps or such in your code. A good
example is an integer that you declare but never use; the error list would tell you that. So the error list
even helps to clean your code of useless clutter. How cool is that?

When the error list finds an error, it displays several things. The first, of course, is what the error is. It
may just be a semicolon you forgot or something similar. The rest of the error list indicates the location
of the problem, including its filename, line number, and even the column. While it gives you this data,
don’t think you still have to hunt for it by yourself. Just double-click the error in the error list and it
takes you straight to the problem. It also does the same for warnings.

82

Chapter 6

10_589555 ch06.qxd 12/29/05 8:25 PM Page 82

Try It Out Creating the Chapter Project and Using the Error List
To start debugging, of course, you need a project to debug. In this project you will add a couple of errors
to cause the Error List window to appear.

1. Open C# Express.

2. Click New Project. The New Project dialog box appears.

3. Pick the Windows application.

4. Give the project a name of your choice. The project for this example was named Chapter 6.

5. Drag and drop a Button control onto the form. This will be the button to show how to use the
Error List window to locate errors in the code.

6. Type Error List in the Text property of the button.

7. Type btnErrorList for the name of the button.

8. Double-click the btnErrorList button. The Click routine will be created with the following
displayed:

private void btnErrorList_Click(object sender, EventArgs e)
{

}

9. Type the following text in the code block displayed in Step 8.

bool blnTest;
blnTest = 0;
if (blnTest = false);

10. Now choose Build ➪ Build Solution. This builds the solution without executing the applica-
tion. You can then see the Error List window in the left bottom corner of the IDE, as shown in
Figure 6-1.

As you can see from the list of errors in the Error List window, you can double-click the errors and cor-
rect the bugs. The last error has occurred because you need to have a == when evaluating criteria. You
can see the error is highlighted in Figure 6-2.

As you click the other issues in the error list, you will see other bugs that can be fixed. Once you have
corrected all the errors in the list, you can rebuild the solution again to test for more errors.

As you rebuild your solution and correct the errors that occur, you will see new errors occurs. This is
because some errors can hide other errors.

The next thing to look at is how you go into break mode to work on debugging the application.

You will want to comment-out the lines of code with the errors that you typed in Step 9. To do this,
highlight them, and press Ctrl+E, C, or use the toolbar button that looks like the graphic to the right.

83

Debugging Applications in C# Express

10_589555 ch06.qxd 12/29/05 8:25 PM Page 83

Figure 6-1

Figure 6-2

84

Chapter 6

10_589555 ch06.qxd 12/29/05 8:25 PM Page 84

Break Mode versus Executing Mode
There will be times when you will need to stop, or pause, code as it is executing. When you are doing it
to debug the code and plan on continuing the execution, then the code is placed in break mode. Once in
break mode, there are a number of ways you can research various issues with the code and examine var-
ious aspects of your application, including examining and manipulating variables. Another task you can
accomplish is fixing those semantic and logical errors mentioned before. Remember how they don’t
show up on the error list? Well, break mode is one of the best ways to find these errors. Break mode
enables you to go step-by-step through your program and watch the code working. Several tools are
available to you in break mode.

The remainder of this chapter introduces the various tools that you have at your disposal for debugging
your applications. You can cause the application to go into break mode several ways. The way that you will
probably use the most is by setting breakpoints. These are discussed in the next section in greater detail.

The other way is to move into the editor and choose Debug ➪ Break All from the menu. When this hap-
pens you will then be taken to the editor in break mode, with the line of code the application is breaking
on highlighted in green.

Try It Out Put the Application into Break Mode Using the Menus
Using the application you created in the last Try It Out:

1. Drag and drop another button onto the form.

2. Type btnBreakUsingMenus for the Name property, Breach Using Menus for the Text property.

3. Double-click the button you added. The routine for the Click event will be created as
shown here:

private void btnBreakUsingMenus_Click(object sender, EventArgs e)
{

}

4. Type the following line of code to add a command that will cause the application to pause:

MessageBox.Show(“Break Me”);

5. Press F5 to build and execute the application.

6. Click the new button you created.

7. Switch back to the editor.

8. Choose Debug ➪ Break All from the menu. The code will break and display the last line it was
on, in this case the line of code with the MessageBox.Show() method was called. You can see
this in Figure 6-3.

9. At this point, you can press F5 to continue executing the application or quit by pressing
Shift+F5.

While it is nice to be able to break into the application whenever you need to, it can get kind of hard to
break it exactly at the right spot where you want it to break. C# Express provides other ways to break
into your application. The main way is by using breakpoints.

85

Debugging Applications in C# Express

10_589555 ch06.qxd 12/29/05 8:25 PM Page 85

Figure 6-3

Working with Breakpoints
When you add breakpoints in your application, you are specifying which lines of code you want to have
the program stop on. The great thing about breakpoints is that you can toggle them on and off as your
need them for debugging purposes in just about anyplace in the code. With breakpoints you can:

❑ Set breakpoints. While in the code file, either in editing or break mode, you can set breakpoints
a number of ways, all of them able to toggle the breakpoints on and off: pressing F9, choosing
Debug ➪ Toggle Breakpoint, or clicking the left mouse button in the gray gutter on the left-hand
side of the window. No matter how you set the breakpoints, a red circle will appear in the gut-
ter, and the whole line will be highlighted in red.

❑ Delete Breakpoint. While you can toggle using the different methods described, you also can
right-click the left gutter and choose Delete Breakpoint.

❑ Disable Breakpoints. Disabling breakpoints enables you to keep a breakpoint in the program,
but not have it run. For example, say you are testing a piece of code a few times and want
the code to run through a couple times in between without having to reset the breakpoints,.
You can disable a breakpoint by right-clicking the breakpoint in the gutter and choose Disable
Breakpoint from the menu. If in the highlighted breakpoint line, you can then choose
Breakpoint ➪ Disable Breakpoint.

You can see a couple of breakpoints set in Figure 6-4.

86

Chapter 6

10_589555 ch06.qxd 12/29/05 8:25 PM Page 86

Figure 6-4

Edit and Continue Feature in C# Express
One exciting feature in C# Express is the ability to edit your application in break mode and then con-
tinue on with executing your application. This is exciting because in the past whenever you had to edit
your program in break mode, Visual Studio would have to reset the application and you would have to
rerun it.

In Figure 6-4, you can see that the following code

int intTest1 = 3;
int intTest2 = 5;
TestRoutine1(intTest1 + intTest2);

87

Debugging Applications in C# Express

10_589555 ch06.qxd 12/29/05 8:25 PM Page 87

was passing 3+5 to TestRoutine1. If you decided mid-execution you wanted change it to be

TestRoutine1((intTest1 + intTest2)*3);

you would do this by setting a breakpoint on the line of code calling TestRoutine1. When you execute
the program and it halts on that line of code, you can just change the line of code as needed. Once the
line of code is changed, you could then press F5 to continue. Once F5 is pressed, a dialog box, as shown
in Figure 6-5 appears, asking if you want to have Edit and Continue apply the changes to the code.

Click Yes and the code continues executing with the most current changes. Answer No and the program
continues on, but with the code as it was before changes at runtime.

Figure 6-5

88

Chapter 6

10_589555 ch06.qxd 12/29/05 8:25 PM Page 88

You have a lot of options for how you can use Edit and Continue, and the way to see those options is to
choose Tools ➪ Options. Then click the Edit and Continue option under Debugging. When you click
these options, the options appear, as shown in Figure 6-6.

Figure 6-6

Now take some time to look through them and experiment a bit. Then we will discuss displaying and
modifying the contents of variables.

Displaying and Modifying Variables
when in Break Mode

While in break mode, besides being able to view what part of the code you are in, there are a number of
ways that you can view and even modify the variables in your applications. The quickest way to look at
variables is to use a feature that is also used for other purposes in the C# Express IDE, called IntelliSense.

Using IntelliSense
One of the ways to use IntelliSense is, when in break mode, placing the mouse over a variable. This fea-
ture goes along with other IntelliSense features such as displaying classes, properties, and methods as
you are typing the name of the objects in code.

Once you have the mouse over the variable, you then see the name and value currently stored in the
variable. But IntelliSense doesn’t stop there; you can click the value portion of the variable and change it
right there. When you change it, C# Express doesn’t even call the Edit and Continue feature, but uses the

89

Debugging Applications in C# Express

10_589555 ch06.qxd 12/29/05 8:25 PM Page 89

new value. Previously, when you wanted to change values, you had to use the Watch or Immediate win-
dows, both of which are discussed in the next sections.

First, you should try out changing a variable yourself.

Try It Out Change a Variable at Runtime Using IntelliSense
Utilizing the project that you created for this chapter:

1. Press F5 to build and execute the applications.

2. Click the Breakpoint button on the main form. The code should break on the following line of
code:

TestRoutine1(intTest1 + intTest2);

3. Place the mouse over the variable called intTest2. You now see the name of the variable and
the value displayed.

4. Click the mouse button in the variable portion of the IntelliSense display, and change the value
as desired.

5. Press F5 to continue execution. The value displayed in the message box now uses the new value
you placed in intTest2.

Additional Ways of Displaying Variables
Besides using IntelliSense, there are a few other ways to display and modify variables as the code is run-
ning. The following sections briefly discuss each one and explain how to use them.

Locals Window
When you are running your code, you will have variables that are used locally by your program. In
addition to the variables you create, C# generates and uses variables as well. The Locals window dis-
plays these variables, including giving you access to the properties and collections for variables that
have them. A good example is that when you are in a form, you will be able to see the various form
properties, as shown in Figure 6-7.

You can get to the Locals window when the application is running or in break mode via the Debug ➪

Windows menu item. You also will find the rest of the various tools that I discuss off this menu. If you
right-click an entry in the Locals window, you can choose Edit Value to modify a value of one of the
local variables.

You also can get to the majority of the debugging tools using the Debug toolbar, located above the editor
windows. The toolbar, with the Windows options displayed, is shown in Figure 6-8.

90

Chapter 6

10_589555 ch06.qxd 12/29/05 8:25 PM Page 90

Figure 6-7

Figure 6-8

Immediate Window
On the right side of the screen in Figure 6-7, you can see the Immediate window. This window provides
the ability to display and modify variables as well execute commands. As you get more comfortable
with programming and debugging your applications, you will find yourself using this window more.
To start with, you can see in Figure 6-9 where intTest1 is displayed using the ?, and is set to a new
value using the Immediate window.

91

Debugging Applications in C# Express

10_589555 ch06.qxd 12/29/05 8:25 PM Page 91

Figure 6-9

Watch Window
The Watch window is useful when you have a variable you want to keep track of throughout your appli-
cation. When the application is running, you can add a variable to the Watch window by right-clicking
the variable in break mode and choosing Add Watch. Once this is done, you can then see and manipu-
late the variable in the Watch window, shown in Figure 6-10.

Figure 6-10

Additional Windows
There are some additional windows you can take advantage of such as the Output and Quick Console
windows. These windows offer you different ways to debug your applications, where you can send your
output to the Output window and perform commands using the Quick Console windows.

Stepping through Code
After breaking in your code, at times you will want to step through your code either line by line or
using a little less granular method, but still one that provides more control than using F5. A number of

92

Chapter 6

10_589555 ch06.qxd 12/29/05 8:25 PM Page 92

commands offer you control over stepping through code. When in code you can access these commands
using either the Debug toolbar or choosing them off the Debug menu:

❑ Step Into. This command single-steps you through code, including stepping into routines that
are called from other routines. When the routine called is completed, the step goes back up to
the next line of code in the calling routine. F11 also is used to invoke the Step Into command.

❑ Step Over. Much like the Step Into command except when you are on the call for a routine, it
will execute the call (and the routine) but continues on the line of code following the routine.

❑ Step Out Of. Just as it sounds, this command steps you out of a routine and sends you back up
into the calling routine, once again continuing on the next line of code that called the routine.

The following commands can be found by right-clicking the mouse in the code window during break
mode. For these commands, place the cursor where you want the commands executed.

❑ Run to Cursor. This command starts executing the program until either a breakpoint is encoun-
tered or the line of code is reach that you invoked this command on.

❑ Set Next Statement. This command enables you to totally skip lines by jumping to the cursor
location.

Other Debugging Tools
A number of additional tools are available for debugging your applications, some of which are a bit
more advanced; others just make sense to cover in other chapters. Following are some of these tools:

❑ Call Stack window. This window displays the routines that have been called in the current exe-
cution of the program. The routines are displayed in reverse order. An example of the call stack
is shown in Figure 6-11.

Figure 6-11

As you click the routines displayed, you are taken to those routines, and the last line executed is
displayed in green.

93

Debugging Applications in C# Express

10_589555 ch06.qxd 12/29/05 8:25 PM Page 93

❑ Breaking on Exceptions. This option enables you to specify which errors (exceptions) you want
to have your system break on. Exceptions are runtime errors that you can’t necessarily debug
and remove from your applications. However, you can “catch” the errors and handle them.
Sometimes you will purposely want your exceptions to break your applications when you are
debugging them, so you can figure out how to handle them. You can get to the Exception fea-
ture by choosing Debugging ➪ Exceptions. When chosen, you will then see the Exceptions dia-
log box displayed in Figure 6-12.

Figure 6-12

Exceptions are discussed in Chapter 7.

❑ Data Visualizers. A new feature in C# Express, Data Visualizers let you visualize your data
when in debugging mode. This is very cool because it enables you to work though data as you
would other variables in your application.

Summary
In this chapter, you have seen that there are many ways to debug your applications. Some of the syntac-
tical errors are caught when you are trying to build your applications, using the Error List by double-
clicking the error, and having the editor take you to the exact piece of code that is causing the errors.
As you are fixing errors, you will notice that sometimes when you fix one error, you uncover a number
of others.

There are some errors you can correct when you walk line by line through the code and examine the
data. C# Express provides many tools to make the job easier using breakpoints, Watch windows, and the
new Edit and Continue feature. Breakpoints give you the ability to stop the execution of your applica-
tion just about anywhere in your code. You can even disable a breakpoint while leaving it in the code for
later use.

94

Chapter 6

10_589555 ch06.qxd 12/29/05 8:25 PM Page 94

By debugging your application thoroughly and adding exceptions, as described in Chapter 7, you can
make your applications pretty darned bulletproof. This chapter showed you how to use the various tools
in C# Express to debug your applications. As mentioned, don’t sweat it if you are a little confused or
nervous with some other tools presented in this chapter. It is a big tool chest, but just like in real life, you
start with the easy tools like a hammer or screwdriver, get comfortable with those, then move onto the
jigsaws and routers (whatever those are).

Exercises
1. Name the two different types of errors you can debug.

2. What are some of the ways to work with breakpoints?

3. Name two of the windows that are used for displaying values in break mode.

4. What is the technology that enables you to hover the mouse over variables and see their values
in break mode?

5. What are the three commands for stepping through code?

95

Debugging Applications in C# Express

10_589555 ch06.qxd 12/29/05 8:25 PM Page 95

10_589555 ch06.qxd 12/29/05 8:25 PM Page 96

7
Selections, Iterations, and

Catching Exceptions

In living your day-to-day life, you have to make decisions. I remember when I graduated from
high school I didn’t really want to make any decisions, but alas, such is life. It can also be said that
when programming your applications, regardless of what language you are using, you will have
to make decisions in the code. In both code and life, once decisions are made, you will take one
action or another. In coding, this decision making is called selection, also known as branching. When
you need to make decisions and branch, C# provides a number of statements, such as if . . .
else and switch, that can help you compare variables and objects in your code and execute
blocks of code based on decisions made.

Another necessary feature of the programming language is to perform loops, also referred to as
iterations. Examples of iterations are when you want to have your code loop through the days of
a given month and perform an action for each day, or just do a count up to 10. You need to be able
to tell your application to perform a code block for a specified number of times. C# provides a
number of statements for accomplish iterations depending on what the task is.

Lastly, no matter how well you build your code, issues are going to occur. These issues, called
exceptions in the .NET realm, can cause serious problems if not handled correctly. How you handle
these exceptions affects the overall user experience in working with your applications (and also
could spare you from getting beat up by IT people).

In discussing the topics just mentioned, this chapter will cover:

❑ Calling routines from one another

❑ Working with if . . . else statements to handle simple conditional selection

❑ Using switch statements for more complex selections

❑ Working with for statements to accomplish iterations

❑ Learning how to use try . . catch . . finally to catch exceptions that can occur

11_589555 ch07.qxd 12/29/05 8:41 PM Page 97

Performing Selections in Your Applications
While not every routine you create in C# will require you to make decisions and select either a single
line or blocks of code, it happens quite frequently. It would be very limiting if C# didn’t offer commands
that take the need to branch in your code into consideration. The majority of programming languages
offer some kind of branching statements as far back as some of the original machine languages.

C# has two main statements to facilitate selection in C#: if . . . else for simple branching and
switch . . . case for more complex selections. Before jumping into the statements, I want to discuss
the project used for these examples and have you create it.

Creating the Chapter 7 Project
To show this and the other examples in this chapter, you will create a form that can be used to display
results from all the examples. The form is shown in Figure 7-1.

Figure 7-1

As you can see from the number of buttons displayed here, there is a lot of work to do. So get started
already!

Try It Out Create the Sample Form
To help you understand how to use the various statements discussed in this chapter, besides the buttons
used for executing the examples that most of the forms in the book use, you will add two Label and two
TextBox controls. You will use the first text box to input values, and when you click each of the buttons,
the code will display values in the second text box.

1. Open C# Express.

2. Click New Project.

98

Chapter 7

11_589555 ch07.qxd 12/29/05 8:41 PM Page 98

3. Choose Windows Application for the template to use.

4. Name the project, and click OK. The project is created and the default form displayed.

I will leave it up to you to specify the properties of the form and command buttons as you see fit, since
the purpose of this chapter is to focus on statements, and you have had a lot of experience creating sim-
ple forms.

5. Add the two Label controls and specify the Text property in the Properties window to display
“First Text Box” and “Second Text Box”.

6. Add the two TextBox controls below each Label control added. Make sure that the Name
properties of the two controls are textBox1 and textBox2, which should be the default
setting.

7. Set the Multiline property of each TextBox control to True, as shown in Figure 7-2 for
textBox1. The figure also shows how the four controls described in these steps could look.

Figure 7-2

Okay, now you’re ready to get into the various statements I wanted to discuss in this chapter.

Simple Selection Using if...else Statements
When you have a quick decision to make in your code, if . . . else statements are the ones to use. The
syntax for these statements is as follows:

99

Selections, Iterations, and Catching Exceptions

11_589555 ch07.qxd 12/29/05 8:41 PM Page 99

if (criteria true value)
statement(s) to perform if true

else
statement(s) to perform if false

As I mentioned, you are making decisions in code and selecting a path (code) that you want to take, just
like in real life.

One nice thing about the if statement is if you only want to execute a line of code if something is true,
you don’t even have to use the else portion of the statements. This is shown in the following:

if (this.textBox1.Text == “Display”)
this.textBox2.Text = “I am displaying”;

This way, you perform the action only if the criteria in the if statement is met, in this case:

this.textBox1.Text == “Display”

You need to make sure you surround the criteria with parentheses (). Also, remember that by using
the == you are performing a comparison, not assigning the value.

Working with Criteria
When dealing with criteria in various statements, you will have to remember your good old high school
algebra. Actually, you will use what is called boolean algebra in comparisons.

Utilizing Operators
When looking at criteria, whenever you need to compare values such as the text box value with the lit-
eral string “Display”, you will use an operator. Operators provide the means for C# to perform boolean
evaluations, meaning returning true or false. In this case == is used so see if two values are equal. There
are a number of other operators that you can use, depending on the criteria you are trying to evaluate.
Here is a table of some of the other operator possibilities:

Symbol Description

== Equal

>= Greater than or equal to

> Greater than

!= Not equal to

<= Less than or equal to

< Less than

There are additional operators, but these are the most common and will get you started nicely. You will
use operators with more than just selection-type statements. You will use them for iteration statements
as well.

100

Chapter 7

11_589555 ch07.qxd 12/29/05 8:41 PM Page 100

For another example of using one of the other operators, if you wanted to look at a variable called
intAge and make sure that code was only executed if the age was 18 or older, the selection line of code
would look as follows:

if (intAge >= 18)

I think you get the idea. One last topic to discuss with regard to criteria is the use of complex criteria.

Complex Criteria
When you need to compare more than one value on a line, you will use additional operators that per-
forms AND and OR logic. Below are some of those operators.

Symbol Description

&& Logical AND

|| Logical Or

Suppose you need to look not only at those who are 18 and over but also (AND) check that the value in
strState is equal to “WA”. The selection line of code would be

if ((intAge >= 18) && (strState == “WA”))

Notice the use of parentheses; just as in algebra, you can control which operators get evaluated based on
how you have the parentheses positioned. Those operators inside parentheses are evaluated first.

Using Code Blocks with Selection
Instead of single lines of code as shown previously, you can use code blocks surrounded by {}. Say in
addition to updating the second TextBox control, you want to display a message box. This would be
accomplished with the following lines of code:

if (this.textBox1.Text == “Display”)
{

this.textBox2.Text = “I am displaying”;
MessageBox.Show(“Displaying here too”);

}

Time to go ahead and use the if statement.

Try It Out Use an if Statement to Select a Block of Code
Using the form you created in the first Try It Out:

1. Drag and drop a Button control onto the form.

2. Name it as desired. For this example, the Button control was named btnIf.

101

Selections, Iterations, and Catching Exceptions

11_589555 ch07.qxd 12/29/05 8:41 PM Page 101

3. Double-click the btnIf button. The btnIf_Click routine is created as shown here:

private void btnIf_Click(object sender, EventArgs e)
{

}

4. With the cursor between the curly brackets, type the following lines of code:

if (this.textBox1.Text == “Display”)
{

this.textBox2.Text = “I am displaying”;
MessageBox.Show(“Displaying here too”);

}

So the complete btnIf_Click event code looks as follows:

private void btnIf_Click(object sender, EventArgs e)
{

if (this.textBox1.Text == “Display”)
{

this.textBox2.Text = “I am displaying”;
MessageBox.Show(“Displaying here too”);

}
}

5. Press F5 to build and execute the application.

6. Type Display into the first text box.

7. Click the Button control you added. The form (minus some of the buttons) and message box
shown in Figure 7-3 appears.

Figure 7-3

102

Chapter 7

11_589555 ch07.qxd 12/29/05 8:41 PM Page 102

While this is great when you only want to perform actions when a value is true, you can also use an
else statement to perform an alternate line or block of code.

Adding the else Statement
As mentioned, adding an else statement onto an if statements gives you the ability to perform more
than one set of commands. To accomplish this, you place the else statement after the last statement
executed for the if statement:

if (this.textBox1.Text == “Display”)
this.textBox2.Text = “I am displaying”;

else
this.textBox2.Text = “I am not displaying”;

So you can see how easy it is to handle this type of situation.

Additional Ways to Use the if . . . else
In addition to using the else statements, there are a couple of other ways to control the selection of code:

❑ Using if . . . else if . . . else. To make it even more complete, you can add if statements
onto the else statements for even more control. The syntax for this would be as follows:

if (<criteria true value>)
statement(s) to perform if true

else if (<criteria2 true value>)
statement(s) to perform if second criteria is true

else
statement(s) to perform if false

❑ Nesting if...else statements. By nesting if . . . else statements, you can perform addi-
tional statements and control the flow of the code as necessary:

if (<criteria true value>)
if (<criteria 2 true value>)

statement(s) to perform if true
else

statement(s) to perform if false

Try It Out Use if . . else Statements to Select Code
Using the form you created for the chapter:

1. Drag and drop another Button control onto the form.

2. Name it as desired. For this example, the Button control was named btnIfElse.

3. Double-click the btnIfElse button. The btnIfElse_Click routine is created as shown here:

private void btnIfElse_Click(object sender, EventArgs e)
{

}

4. Type the following code between the curly brackets:

103

Selections, Iterations, and Catching Exceptions

11_589555 ch07.qxd 12/29/05 8:41 PM Page 103

if (this.textBox1.Text == “Display”)
this.textBox2.Text = “I am displaying”;

else
this.textBox2.Text = “I am not displaying”;

The final block of code now looks like the following:

private void btnIfElse_Click(object sender, EventArgs e)
{

if (this.textBox1.Text == “Display”)
this.textBox2.Text = “I am displaying”;

else
this.textBox2.Text = “I am not displaying”;

}

5. Press F5 to build and execute the application.

6. Click the new button without typing anything into the first text box. “I am not displaying”
appears in the second text box, since the Text property in the first text box is not set to
“Display.” You can see this in Figure 7-4.

Figure 7-4

While you can use as many if . . . else if . . . else statements together as necessary, it gets pretty
messy very quickly when trying to read that type of code. To help with this issue, you can use the
switch statement.

Working with switch . . . case Statements
When you need to act on more than a couple of values for a given criteria, using the switch . . . case
statement is the way to go. To work with it, you will actually be able to look at the value as more than
just a boolean statement, although you can do just that. This means that instead of just looking at whether
the criteria value is true, you can supply an expression and act on what exactly the value of the expres-
sion is.

104

Chapter 7

11_589555 ch07.qxd 12/29/05 8:41 PM Page 104

Starting with switch...case
The partial syntax for switch...case is as follows:

switch (expression)
{

case constant-expression:
statement
jump-statement

}

I say partial because there is another part that will discussed in the next section. Taking the text box used
on the form for the chapter, you will test to see if numbers have been stored in the Text property. After
using the switch . . . case statement, the code looks to see if the value are equal to the text values of
“1”, “2” . . ., and so on. You can see the partial code:

switch (this.textBox1.Text)
{

case “1”:
this.textBox2.Text = “Monday”;
break;

case “2”:
this.textBox2.Text = “Tuesday”;
break;

...
}

Note the lines of code that read:

break;

This is called the jump statement. Jump statements are used when you are done performing the specified
tasks for each case code block. For now you will only be using the break statement. It causes the pro-
gram to “break” out of the switch statement and continue on the line of code directly after the end of
the switch code block. This statement is required if you are not using the jump statement.

Try It Out Test a TextBox control Value Using switch...case
Using the form you created for the chapter:

1. Drag and drop another Button control onto the form.

2. Name it as desired. For this example the Button control was named btnSwitchCase.

3. Double-click the btnSwitchCase button. The btnSwitchCase_Click routine is created as
shown here:

private void btnSwitchCase_Click(object sender, EventArgs e)
{

}

105

Selections, Iterations, and Catching Exceptions

11_589555 ch07.qxd 12/29/05 8:41 PM Page 105

4. Type the following code between the beginning and ending curly brackets:

switch (this.textBox1.Text)
{

case “1”:
this.textBox2.Text = “Monday”;
break;

case “2”:
this.textBox2.Text = “Tuesday”;
break;

case “3”:
this.textBox2.Text = “Wednesday”;
break;

case “4”:
this.textBox2.Text = “Thursday”;
break;

case “5”:
this.textBox2.Text = “Friday”;
break;

}

5. Press F5 to build and test the application.

6. Type 1 into the first text box.

7. Click the new button you added to the form. The second text box should display “Monday”.

8. Type 3 into the first text box. Note that you will type numbers, not the actual label for the day.

9. Once again click the new button. The second text box displays “Wednesday,” as shown in
Figure 7-5.

Figure 7-5

106

Chapter 7

11_589555 ch07.qxd 12/29/05 8:41 PM Page 106

One place where the switch . . . case statements come up short as discussed thus far is that if you
type in anything but those five days, nothing gets placed in the second text box. To handle this, there is
another statement included in the switch . . . case statements called default.

Add the default Statement
The complete syntax for the switch . . . case statements can be seen here:

switch (expression)
{

case constant-expression:
statement
jump-statement

[default:
statement
jump-statement]

}

The code block created for the default statement is performed if none of the other case statements are
fulfilled. So in the case of the code created to look at days in a week, if none fall into the first five days,
the following default statement and code block are executed:

default:
this.textBox2.Text = “Weekend”;
break;

Now, of course, this isn’t going to take care of all values, because the user can type in any other number
or letter and in this instance gets the default code block, but it is a good example for the default.

Try It Out Use if...else Statements to Select Code
Using the form you created for the chapter:

1. Drag and drop another Button control onto the form.

2. Name it as desired. For this example the Button control was named btnSwitchCaseDefault.

3. Double-click the btnSwitchCaseDefault button. The btnSwitchCaseDefault_Click
routine is created as shown here:

private void btnSwitchCaseDefault_Click(object sender, EventArgs e)
{

}

4. Type the following lines of code:

switch (this.textBox1.Text)
{

case “1”:
this.textBox2.Text = “Monday”;
break;

case “2”:

107

Selections, Iterations, and Catching Exceptions

11_589555 ch07.qxd 12/29/05 8:41 PM Page 107

this.textBox2.Text = “Tuesday”;
break;

case “3”:
this.textBox2.Text = “Wednesday”;
break;

case “4”:
this.textBox2.Text = “Thursday”;
break;

case “5”:
this.textBox2.Text = “Friday”;
break;

default:
this.textBox2.Text = “Weekend”;
break;

}

As all good developers do, you could cut and paste the majority of the code above from the last Try It
Out to save time and steps.

5. Press F5 to build and run the application.

6. Type 6 in the first text box.

7. Click the new button you added in Step 1. The word “Weekend” is displayed in the second text
box, as shown in Figure 7-6.

Figure 7-6

As you are developing your applications, after a while you will know when you need to use one selection-
type statement over another. Sometimes you will start out with one, and as you work with the routine
more, you change it to another because it is more appropriate.

108

Chapter 7

11_589555 ch07.qxd 12/29/05 8:41 PM Page 108

Performing Iterations
In addition to selecting which code needs to be executed, it is inevitable that a situation will arise where
you will need to perform iterations (loops) in your code. Following are some examples where you may
perform iterations:

❑ Perform actions against individual records in a database table. You will get a chance to do this
in Chapter 13, “Working with ADO.NET.”

❑ Work through the days of the given month. This is given as an example in Chapter 14, “Getting
More Experience with Controls.”

❑ Display the date of a specified day of each month for the next 12 months. You will get a
chance to do this in this chapter throughout the sections.

Depending on what tasks you are performing, there are a number of different types of iteration state-
ments you put to use. In the next section you learn how to use each and when you should use one over
the other.

Working with for Statements
When you are iterating a set number of times, and know that number ahead of time, then the for state-
ment is a good one to use. With this statement you specify the number you want to start at and the maxi-
mum value to execute the up to. The syntax for the for statement is as follows:

for ([initializers]; [expression]; [iterators])

❑ initializers— A typed variable that is used to iterate the number of times you are going to
execute.

❑ expression— A boolean expression used to terminate the iterations when expression is
false.

❑ iterators— Taking the variable that is initialized, this segment of the statement performs an
iteration against it. Examples of iterations are ++, which takes the value and adds 1 to it, and --,
which subtracts 1.

Following is an example of the for statement used for this example:

for (int i = 1; i < 6; i++)

Where the expression in this case is I < 6, you could also use a variable such as I < intMax if needed.

The code inside this iteration statement will occur 5 times int i = 1, specifying the starting value, and
i < 6 specifying the maximum). In this case the code that will be executed inside the iteration statement
is as follows:

this.textBox1.Text +=
DateTime.Today.AddMonths(i).ToShortDateString() + Environment.NewLine;

109

Selections, Iterations, and Catching Exceptions

11_589555 ch07.qxd 12/29/05 8:41 PM Page 109

In this command the variable i is used with the AddMonths() method of the DateTime.Today prop-
erty, displaying the ShortDate format (mm/dd/yy). As my excellent technical editor pointed out, this
will change based on the region you are in. The Environment.NewLine is included so that each date is
displayed on a separate line in textBox1.

Try It Out Use the for Statement
Using the form you created for the chapter:

1. Drag and drop another Button control onto the form.

2. Name it as desired. For this example the Button control was named btnFor.

3. Double-click the btnFor button. The btnFor_Click routine is created as shown here:

private void btnFor_Click(object sender, EventArgs e)
{

}

4. Type the following lines of code:

for (int i = 1; i < 6; i++)
this.textBox1.Text +=

DateTime.Today.AddMonths(i).ToShortDateString() + Environment.NewLine;

5. Press F5 to build and test the application.

6. Click the new button you added in Step 1. The next five months are displayed with the same
day as today, as shown in Figure 7-7.

Figure 7-7

110

Chapter 7

11_589555 ch07.qxd 12/29/05 8:41 PM Page 110

If you need to loop through objects or in collections such as controls on a form, you can iterate through
them by using the variable that is created for the index of the array or collection. But a more efficient
way to accomplish the task is the use the foreach statement.

Handling Objects with foreach Statement
When you want to iterate through a collection (or array), you will use the following syntax:

foreach (type identifier in expression)
statement(s)

where the type will be an individual item in the collection specified by expression. The identifier will
be the name you give the individual that will be used in the statement or statements inside the iteration.
In the example in this section you, will iterate through the Controls on the current form.

foreach (Control ctlCurr in this.Controls)

Inside this loop you change the ForeColor property of each of the controls to red, using the following
statement:

ctlCurr.ForeColor = Color.Red;

Try It Out Use the foreach Statement
Using the form you created for the chapter:

1. Drag and drop another Button control onto the form.

2. Name it as desired. For this example the Button control was named btnForEach.

3. Double-click the btnForEach button. The btnForEach_Click routine is created as shown here:

private void btnForEach_Click(object sender, EventArgs e)
{

}

4. Type the following lines of code.

foreach (Control ctlCurr in this.Controls)
ctlCurr.ForeColor = Color.Red;

5. Press F5 to build and test the application.

6. Click the new button you added in Step 1. The fore color of all the controls on the form will be
changed to red. I won’t bother displaying the form since you can’t really see it in black and
white.

As you can see from this example, C# makes it fairly easy to work your way through collections. To read
more about the foreach statement, see Chapter 14, “Getting More Experience with Controls.”

111

Selections, Iterations, and Catching Exceptions

11_589555 ch07.qxd 12/29/05 8:41 PM Page 111

Using do and while Statements
The last iteration statements to discuss are the do and while statements. As with the other statements,
which one you use will depend on what you are trying to accomplish. The syntax for the do statement is
as follows:

do
{

statement(s)
}
while (expression);

With the do statement, the code will execute until the expression in the while portion of the statement
is false. Here is the do statement used in the example for this section, along with the statements used
within it:

do
{

this.textBox2.Text +=
DateTime.Today.AddMonths(intCurr).ToShortDateString() +
Environment.NewLine;

intCurr++;
}
while (intCurr < 5);

You can use the intCurr++ syntax inside the expression used with the while portion of the do state-
ment do (intCurr++). If you did, then you wouldn’t need it inside the code block.

An alternative to the do statement is the while statement. The syntax for that can be seen here:

while (expression)
{

statement(s)
}

Here is the while statement used in the example:

while (intCurr < 5)
{

this.textBox2.Text +=
DateTime.Today.AddMonths(intCurr).ToShortDateString() +
Environment.NewLine;

intCurr++;
};

You will notice that the difference between the two is where the expression is evaluated. Because the do
statement evaluates the expression at the bottom of the code block, it will always execute for at least one
iteration, even if the expression is false to begin with.

112

Chapter 7

11_589555 ch07.qxd 12/29/05 8:41 PM Page 112

Try It Out Use the do and while Statements
Using the form you created for the chapter:

1. Drag and drop another Button control onto the form.

2. Name it as desired. For this example the Button control was named btnDoAndWhile.

3. Double-click the btnDoAndWhile button. The btnDoAndWhile_Click routine is created as
shown here:

private void btnDoAndWhile_Click(object sender, EventArgs e)
{

}

4. Type the following lines of code:

int intCurr = Convert.ToInt32(this.textBox1.Text);
textBox2.Text = “Using do” + Environment.NewLine;

do
{

this.textBox2.Text +=
DateTime.Today.AddMonths(intCurr).ToShortDateString() +
Environment.NewLine;

intCurr++;
}
while (intCurr < 5);

intCurr = Convert.ToInt32(this.textBox1.Text);
textBox2.Text += “Using while” + Environment.NewLine;

while (intCurr < 5)
{

this.textBox2.Text +=
DateTime.Today.AddMonths(intCurr).ToShortDateString() +
Environment.NewLine;

intCurr++;
};

The only code different from in the examples shown in the section earlier is the inclusion of the
two following lines of code, used twice:

intCurr = Convert.ToInt32(this.textBox1.Text);
textBox2.Text += “Using statement type” + Environment.NewLine;

These are used to initialize the variable intCurr the first time with the value from textBox1,
and then display a header in textBox2.

5. Press F5 to build and test the application.

6. Type 1 for the value in the first text box.

7. Click the new button you added in Step 1. You will then see the display in Figure 7-8.

113

Selections, Iterations, and Catching Exceptions

11_589555 ch07.qxd 12/29/05 8:41 PM Page 113

Figure 7-8

As you can see in Figure 7-8 there isn’t much difference when using the two statements with an
expression that is true more than the first time through the loop. However, when you use an
expression that evaluates to false the first time, you can see the difference.

8. Type 6; then click the button added in Step 1. Since 6 comes back false the first time
(intCurr < 5), then the while statement never gets executed. You can see this in Figure 7-9.

Figure 7-9

Hopefully you can see the difference between the two. As with selection-type statements, you will gain
confidence and see where you will use one type of iteration statement over the other.

114

Chapter 7

11_589555 ch07.qxd 12/29/05 8:41 PM Page 114

Catching Exceptions in Your Code
When you are writing code you will have errors that occur at runtime. Even if you write the most perfect
code in the world, there will be issues that happen because of outside influences. An important feature
of the code is to be able to handle the errors when they do occur, and keep the application running. As
mentioned, these errors in .NET are called exceptions. Exceptions can occur for a variety of reasons, and
in fact there are even classes created in .NET to help you trap and handle the exceptions.

If left unhandled, your application will give a rude error message and dump you out to Windows. If
running in the Release mode into the code if in Debug, which is the default mode for running. Before
seeing how to trap the exceptions mentioned in the last paragraph, I want you to see what it looks like
to have an exception to occur unhandled.

Try It Out Create a Routine with an Unhandled Exception
Using the form you created for the chapter:

1. Drag and drop another Button control onto the form.

2. Name it as desired. For this example the Button control was named btnUnhandledException.

3. Double-click the btnUnhandledException button. The btnUnhandledException_Click
routine is created as shown here:

private void btnUnhandledException_Click(object sender, EventArgs e)
{

}

4. Type the following lines of code:

int intCurr = Convert.ToInt32(this.textBox1.Text);
textBox2.Text = Convert.ToString(intCurr + 3);

This code can break if a nonnumeric value is entered in textBox1. This includes no value. You
can see the complete routine here:

private void btnUnhandledException_Click(object sender, EventArgs e)
{

int intCurr = Convert.ToInt32(this.textBox1.Text);
textBox2.Text = Convert.ToString(intCurr + 3);

}

5. Press F5 to build and execute the application.

6. Click the new button you added in Step 1 without putting any value in textBox1. The error is
displayed in Figure 7-10.

While the rest of the chapter discusses the various ways to catch exceptions, I generally let the excep-
tions occur while I am writing the code, until I am ready to release it. The reason is that you can see
some of the exceptions that can occur and possibly program for them.

115

Selections, Iterations, and Catching Exceptions

11_589555 ch07.qxd 12/29/05 8:41 PM Page 115

Figure 7-10

Starting Off Easy with try...catch Statements
To catch exceptions you will start with the try . . . catch statements, the syntax of which can be seen
here:

try
{
}
Catch[(exceptiontype variable)]
{
}

For now, don’t worry about the (exceptiontype variable) portion of the syntax. When you just want
to catch and handle any exception that occurs, you can use the try . . . catch statements alone. As
an example, taking the two lines of code from the last section, you can wrap the code with the try code
block and then handle resulting exceptions with the catch code block. Here is how it looks:

try
{

int intCurr = Convert.ToInt32(this.textBox1.Text);

116

Chapter 7

11_589555 ch07.qxd 12/29/05 8:41 PM Page 116

textBox2.Text = Convert.ToString(intCurr + 3);
}
catch
{

textBox2.Text = “Exception Occurred”;
}

In this code a literal string is placed into the Textproperty of textBox2 to let the user know an error has
occurred. Sometimes that is the way you handle exceptions, by simple displaying a message that
informs the user that an exception has occurred.

Try It Out Use the try...catch statements
Using the form you created for the chapter:

1. Drag and drop another Button control onto the form.

2. Name it as desired. For this example the Button control was named btnTryCatch.

3. Double-click the btnTryCatch button. The btnTryCatch_Click routine is created as shown
here:

private void btnTryCatch_Click(object sender, EventArgs e)
{

}

4. Type the following lines of code:

try
{

int intCurr = Convert.ToInt32(this.textBox1.Text);
textBox2.Text = Convert.ToString(intCurr + 3);

}
catch
{

textBox2.Text = “Exception Occurred”;
}

This code can break if a nonnumeric value is entered in textBox1. This includes no value. You
can see the complete routine here:

private void btnTryCatch_Click(object sender, EventArgs e)
{

try
{

int intCurr = Convert.ToInt32(this.textBox1.Text);
textBox2.Text = Convert.ToString(intCurr + 3);

}
catch
{

textBox2.Text = “Exception Occurred”;
}

}

117

Selections, Iterations, and Catching Exceptions

11_589555 ch07.qxd 12/29/05 8:41 PM Page 117

5. Press F5 to build and execute the application.

6. Click the new button you added in Step 1. Because you did not add any value in textBox1, the
error occurs and the line of code in the catch statement is displayed, as shown in Figure 7-11.

Figure 7-11

Using the finally Statement
Sometimes you want to have certain lines of code to execute regardless of whether the code caused an
exception or not. The syntax for this will look as follows:

try
{
}
catch
{
}
finally
{
}

The finally block will occur whether the try block throws an exception or not. The finally block
is a great place to put any cleanup code that you want to have run. Here is the code used for the current
example:

private void btnTryCatchFinally_Click(object sender, EventArgs e)
{

try
{

int intCurr = Convert.ToInt32(this.textBox1.Text);

118

Chapter 7

11_589555 ch07.qxd 12/29/05 8:41 PM Page 118

textBox2.Text = Convert.ToString(intCurr + 3);
}
catch
{

textBox2.Text = “Exception Occurred”;
}
finally
{

textBox2.Text += Environment.NewLine + “Completed”;
}

}

In this example the same two lines of code are run to cause the exception to occur. The catch statement
stores the string literal into textBox2. Lastly, the finally statement code block adds a NewLine state-
ment and adds it to a string literal “Completed”. So regardless of what you put in the TextBox, this
code will place the word “Completed” after the value in the TextBox.

Try It Out Use the try...catch...finally Statements
Using the form you created for the chapter:

1. Drag and drop another Button control onto the form.

2. Name it as desired. For this example the Button control was named btnTryCatchFinally.

3. Double-click the btnTryCatchFinally button. The btnTryCatchFinally_Click routine is
created as shown here:

private void btnTryCatchFinally_Click(object sender, EventArgs e)
{

}

4. Type the following lines of code:

try
{

int intCurr = Convert.ToInt32(this.textBox1.Text);
textBox2.Text = Convert.ToString(intCurr + 3);

}
catch
{

textBox2.Text = “Exception Occurred”;
}
finally
{

textBox2.Text += Environment.NewLine + “Completed”;

}

The final block of code looks like this:

119

Selections, Iterations, and Catching Exceptions

11_589555 ch07.qxd 12/29/05 8:41 PM Page 119

private void btnTryCatchFinally_Click(object sender, EventArgs e)
{

try
{

int intCurr = Convert.ToInt32(this.textBox1.Text);
textBox2.Text = Convert.ToString(intCurr + 3);

}
catch
{

textBox2.Text = “Exception Occurred”;
}
finally
{

textBox2.Text += Environment.NewLine + “Completed”;
}

}

5. Press F5 to build and execute the application.

6. Type 1 in the first text box.

7. Click the new button you added in Step 1. Since a legitimate entry was made in textBox1, no
error occurs, and the “Completed” message is displayed (see Figure 7-12).

Figure 7-12

8. Now delete the entry in textBox1.

9. Click the new button you added in Step 1. Now you will see the message that an exception
occurred, and also still see the “Completed” message provided by the finally statement (see
Figure 7-13).

There is definitely more you can do to the try . . . catch code blocks, especially when you add in code
to track specific errors.

120

Chapter 7

11_589555 ch07.qxd 12/29/05 8:41 PM Page 120

Figure 7-13

Summary
If all you could do in a programming language is just write single lines of code that execute one by one
without making any decisions or selecting blocks of code on those decisions, you may not be able to
accomplish some tasks. Either that or it would either take a lot more code to accomplish it. The same
could be especially said when you have the occasion to make iterations such as working through the
days of the month. You would need to write the same piece of code, maybe changing one or two lines,
for each day of the month. At the risk of sounding technical, it would be a pain, to say the least.

C# provides statements such as if . . . else and switch . . . case for selecting code, and for state-
ments as well as others to help with iterating through code. Which of the statements just mentioned you
use will depend on what task you are trying to handle in the code. This chapter discussed how to use
these statements. It also discussed how to trap errors, called exceptions, that can occur at runtime. Lastly,
the chapter talked about what you can do with the exceptions that occur.

Exercises
1. When would you use an if . . . else statement versus a switch . . . case statement?

2. What category of statements does the if . . . else statement fall into?

3. What is the different between the for and foreach statements?

4. Which statement, do or while, does the code execute at least one code block if the expression
starts as false?

5. If the developer wants to have a code block occur whether an exception occurs or not, which
statement does the developer use with the try statement?

121

Selections, Iterations, and Catching Exceptions

11_589555 ch07.qxd 12/29/05 8:41 PM Page 121

11_589555 ch07.qxd 12/29/05 8:41 PM Page 122

Part II
Creating Applications

with C# Express

12_589555 pt02.qxd 12/29/05 8:27 PM Page 123

12_589555 pt02.qxd 12/29/05 8:27 PM Page 124

8
Working with Forms

and Controls

Forms and controls are central to creating professional Windows applications. The more you know
about those forms and controls, the more you can take advantage of them. There are standards
that are used for creating Windows applications. Utilizing those standards ensures that users can
count on having a similar experience when working in various Window applications, even though
they may be created by different developers.

The great thing is that today the available controls are designed in such a way as to make it easier
to follow these standards, and harder to break them. Often, things work just as you’d expect them
to and fit in with the look and feel of other Windows apps with the minimum of effort (such as the
default behavior of a form — even with no controls on it).

Besides following standards to create professional applications, developers can utilize properties,
methods, and events to control information being entered and displayed on those forms and in the
controls. There are various controls that are used for various tasks depending on what you are try-
ing to accomplish with the forms. This chapter will discuss the following:

❑ Some of the Windows standards used for creating interfaces

❑ How to use properties, methods, and events to work with forms

❑ How to utilize toolbars and menus on your forms

❑ Useful controls available for use on forms

❑ How to work with properties, methods, and events of those controls

Creating User Interfaces Using
Windows Standards

Learning the basics of how to create forms and utilize controls in C# Express is essential to creating
applications. If you don’t create applications that are laid out logically and consistently, users will
just get frustrated and not want to use those applications.

13_589555 ch08.qxd 12/29/05 8:36 PM Page 125

Windows interface standards could fill a whole book, but I want to give you some suggestions on some
standards that can make your interfaces more attractive and usable. To do this, I will cover the follow-
ing areas: using form standards, adding menus and toolbars, and using the right control for the right
purpose. I will start with a type of form that is simple to create and convenient to use.

Use of Switchboards
When creating switchboards, you will place buttons on forms to display possible tasks. Some of the
chapters, including this one, use switchboard to help organize the tasks, and display those tasks in logi-
cal orders. This helps create a consistent interface for your application. Figure 8-1 displays the switch-
board created for this chapter.

Figure 8-1

Switchboard can take on many forms. The ones used by the chapters of this book are probably the sim-
plest. Multiple switchboards also can be used to display sub-menu-type tasks. For example, you may
have a main switchboard that reflects all the choices for a application on the form’s buttons, with one of
the buttons having a caption of “Reports.” This button then opens another switchboard when clicked.
The two switchboards are displayed in Figure 8-2.

Figure 8-2

126

Chapter 8

13_589555 ch08.qxd 12/29/05 8:36 PM Page 126

Form Application Types and Standards
Before jumping into the various form standards that can be used, I want to discuss two types of form
application standards that affect how your overall application works with forms.

Form Application Types
There are two main types of application styles that you can use to display your forms: single-document
interface (SDI) and multiple-document interface (MDI). By default, the single-document interface is
what is created when you create a Windows application project using C# Express. Single-document
interface means just that, a single document (form) is displayed separately. You can see that in Fig-
ure 8-2 where each of the switchboards is treated as a separate window.

With MDI forms, you will have a main window, and then all windows (forms) are then opened within
that main window. An example of using MDI forms is shown in Figure 8-3.

Figure 8-3

127

Working with Forms and Controls

13_589555 ch08.qxd 12/29/05 8:36 PM Page 127

Notice that even though there are two additional (child) forms opened inside the MDI parent or main
form, you only see the parent form in the Windows task below the bottom of the screen. These child
forms also are limited to moving inside the main parent form. You will learn how to create MDI forms
later in this chapter in the section titled “Working with MDI Forms.”

Some Form Standards
Besides which type of application you decide to use, there are certain form standards that can be
adhered to that make the users’ experience with your forms more enjoyable and, even more important,
easier to use. While you can create your own style of forms that you think would be interesting and
useful for the user, there are some things you can do to give the user a more consistent interface:

❑ Be conservative with colors. Instead of having a different color for every form you create, use
a consistent color combination, and keep it conservative. If you use the standard colors that
forms are by default, then users can use the Windows theme to change the colors themselves,
instead of having them dictated to them. I have literally seen color combinations that change so
dynamically that they practically send users into seizures.

❑ Display buttons in standard locations. When you are using buttons for closing your forms,
locate them in the same locations on your forms, instead of making the user guess where you
are going to put the buttons because you change them on the forms. If you decide to put the
buttons for tasks in the upper right corner, do it on all the forms in your application.

❑ Use menus and toolbars consistently. Be consistent in your use of menus and toolbars. Generally
these two will reflect the same tasks: menus with text to display commands and toolbars to
display commands graphically. If you use either one or both of these controls on one of your
forms, then use them on all. Also, using the same base menu choices such as File, Edit, View,
and Window, that are used in other major Windows applications helps to give a standard feel
to the application.

❑ Use the right control for the right purpose. When using the many various controls available to
you in creating forms, you want to make sure you use the right control for the task you are try-
ing to accomplish, down to taking a single piece of information from the user.

Now that you know the basics of creating standard forms, it is time now to go into more detail on how
to create effective forms and some of the cool things you can do with them.

Looking at Forms
As discussed throughout the book thus far, when creating Windows applications, keep in mind that they
are generally based around forms. To create useful forms, you need to know how to take advantage of
them, and to do that, you need to know about how to work with form properties.

Form Properties
As with properties of other types of objects, properties of forms can be used to control how a form
looks and behaves. You can see the property sheet for the main switchboard created for Chapter 8 in
Figure 8-4.

128

Chapter 8

13_589555 ch08.qxd 12/29/05 8:36 PM Page 128

Figure 8-4

Form and control properties are broken up into the following categories:

Category Description

Accessibility Used to control how screen looks and the size of the controls based on
which type of accessibility you need, such as for the visually impaired.

Appearance Controls the default settings for various display settings such as height,
width, background color, and starting position for the form.

Behavior Determines how a form behaves depending on that you are trying to
accomplish. Properties in this category include Visible, which allows
you to hide a form without closing it, so that even if the form isn’t
visible, you still have access to all the controls on that form.

Table continued on following page

129

Working with Forms and Controls

13_589555 ch08.qxd 12/29/05 8:36 PM Page 129

Category Description

Data For forms the main property of use in this category is the Tag property,
which allows developers to store text for their own use. This category
is used more on controls, when you can bind the control to data. Data
binding is discussed further in Chapter 11, “Using SQL Server Express
Features within C# Express.”

Design Used for properties that have to do with how the form is treated in
design mode. Also includes localization, controls that determine which
language pack is used, and the name of the form.

Focus The only property in this category is CauseValidation, which when
set to True, causes the validation event to be raised when controls are
changed on the form.

Layout Various properties that control the layout of the form, including start
position and the state of the form, such as minimized, maximized, or
normal.

Misc Contains some miscellaneous properties including two that let you
specify which control is used when the Enter key is pressed
(AcceptButton) and the Esc is pressed (CancelButton).

Window Style Using the properties in this category, you can control what the actual
window looks like and how it behaves based on which features you
specify to use, such as help button and control box.

There are so many properties that it would be hard to cover all of them in one chapter. The fact is that
you won’t even have to use the majority of the properties, since they are set to use default values that
cover most the types of forms you will use.

A Side Step — Creating Switchboards
Even before jumping into the various forms features in the next sections, you need to create the chapter
switchboard. You will then use two Form properties: Name, used to specify the name of the form, and
Text, used to display text in the title bar of the form.

Try It Out Creating the Chapter Switchboard Form
For this Try It Out, you create the chapter’s switchboard form, which will be used for other examples.

1. Create a new Windows Forms project using C# Express as you have throughout the book. In
this case, call it Chapter8.

2. With the form highlighted, in the Properties sheet, change the Name property of the form
to be something more meaningful for you. In the sample for the chapter, this form is called
frmChapter8Main.cs.

Changing the Name property doesn’t change the filename. Changing the filename does change the Name
property, though.

130

Chapter 8

13_589555 ch08.qxd 12/29/05 8:36 PM Page 130

3. Type Chapter 8 Switchboard in the Text property of the form, found in the Properties sheet.

4. Open the Toolbox if it is not already open by choosing View ➪ Toolbox.

5. Drag and drop three Button controls on the form, laying them on the form as shown in
Figure 8-1. Button controls can be found in the Toolbox under the Common Control category.

6. Click the first button added.

7. Locate the Name property in the Properties sheet.

8. Type btnSwitchboard for the Name property of the top button.

9. Click the middle button, and type btnCalculator for the Name property.

10. Click the bottom button, and type btnMDIForms. MDI forms are discussed later in the chapter
in the section called “Working with MDI Forms.”

11. Click the first button again, and locate the Text property in the Properties pane.

12. Type Switchboards for the Text property of btnSwitchboards.

13. Type Calculator - Forms and Controls for the Text property of btnCalculator.

14. Type MDI Forms for the Text property of btnMDIForms. The form should then look somewhat
as it does in Figure 8-5.

Figure 8-5

131

Working with Forms and Controls

13_589555 ch08.qxd 12/29/05 8:36 PM Page 131

Now, even though you have created a form, the switchboard doesn’t open another form. You need to
create the next form and then write code in the Click event code of the buttons you want to program.
The next Try It Out walks you through creating a second switchboard form, then writing the code to
open the form.

To accomplish this, you create a reference variable used to point to the new form; then you use the Show
method of the form to open the form for the user. The following code accomplishes this task:

frmSwitchboardMain frm = new frmSwitchboardMain();
frm.Show();

You are familiar with declaring variables from the last chapter. This time you are declaring one to be
the type of the new form you will create in the next Try It Out, adding the preceding code in the Click
event code for btnSwitchboards. When you add a form or other type of object to a project, you will
be able to see the object added to the list of types to declare. You can see this in Figure 8-6. When
frmSwitchboardMain has been added to the project, it can be referred to in code, as shown using
the IntelliSense feature.

Figure 8-6

Try It Out Creating and Calling Another Switchboard Form
To start off this Try It Out, you create a form that is a second switchboard. You then add code to the main
chapter switchboard to open the new form. So, using the chapter project created in the last Try It Out:

1. Right-click the C# project file, located in the Solution Explorer.

2. Choose Add ➪ New Item . . . from the right-click menu. You can see this choice in Figure 8-7.

The Add New Item dialog box opens, letting you choose from various item templates.

3. Highlight the Windows Form template, and type the name frmSwitchboardMain.cs in the
name of the form.

4. Click Add. The form is now added to the project and displayed in the designer.

5. Type the text Main Switchboard into the Text property of the form, using the Properties sheet.

132

Chapter 8

13_589555 ch08.qxd 12/29/05 8:36 PM Page 132

Figure 8-7

6. Using the same steps outlined in the last Try It Out, drag and drop a few buttons onto the new
form; then type in text for the Text property of each button. You can see the four buttons added
to the sample form and Text properties assigned to them in Figure 8-8.

Figure 8-8

7. Click the Save toolbar button to save your work; then click the frmChapter8Main.cs tab in
the main editor page, or double-click the file in the Solution Explorer. The form will then be
displayed in the main editor page.

8. Double-click the btnSwitchboards button. The code for the form appears in the main editor
page with the opening and closing curly brackets displayed for the click routine.

133

Working with Forms and Controls

13_589555 ch08.qxd 12/29/05 8:36 PM Page 133

9. Type the following lines of code between the opening and closing curly brackets:

private void btnReportSwitchboard_Click(object sender, EventArgs e)
{

frmSwitchboardReports frm = new frmSwitchboardReports();
frm.Show();

}

10. Press F5 to test the application. The Chapter 8 switchboard first opens, and then when you click
the button with label Switchboards, the second form opens, as shown in Figure 8-9.

Figure 8-9

This example works fine, but it does contain one fairly major issue. You can click repeatedly on the
Switchboards button and open multiple subforms. Two ways around this are to either use ShowDialog()
for a modal window instead of Show() or hold a reference to the form and check to see if it exists before
calling Show(). This last solution takes a bit more explaining, so you might want to just stick to the
ShowDialog() method.

Using Form Properties
Just to give you an idea of what you can do with Windows forms, look at the two calculators in
Figure 8-10.

You would be hard-pressed to tell which one is the real calculator provided by Windows XP and which
is the one created using C# Express. You will get started creating the calculator in this chapter, by creat-
ing and setting some properties on the form, and then adding controls in the next few sections. (By the
way, the calculator on the left is the one created using C# Express.)

As just mentioned, this chapter walks you through getting started on creating the calculator, but it
won’t focus on any of the code. That will be covered in Chapter 14, “Getting More Experience with
Controls.”

134

Chapter 8

13_589555 ch08.qxd 12/29/05 8:36 PM Page 134

Figure 8-10

Here are some of the form properties that will be used:

Property Description

Icon Specifies an icon file to use with the individual form — in this case
Calculator.ico, which is located in the folder for this sample
chapter.

StartLocation Set to WindowCenter, this property specifies where to open the form
being created.

Text Sets the text that is displayed in the title bar of the form — in this case
“Calculator.”

Another form property, called MainMenuStrip, is set automatically for you when you place a
MenuStrip control on the form. This is discussed later in this chapter in the section titled “The
MenuStrip Control.” Other properties such as the Height and Width of the form are set using the
designer. Everything else will be left using the default values as set by C# Express.

Try It Out Setting Form Properties for the Calculator
For this Try It Out, you create a form and specify the properties displayed in the last table, as well as size
the form created to match the size of the Microsoft Calendar. You then add the code to the project switch-
board to open the form.

1. Choose Accessories ➪ Calendar from the Start ➪ Program Files menu in Windows. Leave the
Microsoft Calendar application open to use as an example for creating your calculator.

2. Returning to C# Express, right-click the C# project file, located in the Solution Explorer.

3. Choose Add ➪ New Item . . . from the right-click menu.

4. Choose Windows Form for the item template to use.

5. Type frmCalculator for the name of the form, then click Add. The form is created.

135

Working with Forms and Controls

13_589555 ch08.qxd 12/29/05 8:36 PM Page 135

6. Using the sizing handle on the lower right corner of the form, resize the form to match the
Microsoft Calendar application by clicking the handle, holding down the mouse, and drag it to
the desired location, as shown in Figure 8-11.

Figure 8-11

7. Type Calculator for the Text property, located in the Forms properties.

8. Set the form’s StartPosition property to be CenterScreen.

9. Place the cursor in the Icon property of the form.

10. Click the build button (...) next to the Icon property, and locate Calculator.ico on your
sample disk in this chapter’s sample folder.

Note that none of the last four steps are required to create the calculator; they simply make it more like
the original application, and give it a more professional look and feel.

11. Save the form, and switch to the frmChapter8Main.cs form.

12. Double-click the btnCalculator button. The code page opens, creating a new event routine for
the btnCalculator Click event.

13. Type the following code in between the curly brackets:

frmCalculator frm = new frmCalculator();
frm.Show();

This code will open the frmCalculator when you click the btnCalculator button.

136

Chapter 8

13_589555 ch08.qxd 12/29/05 8:36 PM Page 136

14. Press F5 to test the form. Clicking the btnCalculator button, you will then see the form as it
looks in Figure 8-12.

Figure 8-12

At this point the calculator is pretty boring, but it is a great start. The next section goes through some
controls that you will be using on your calculator form, as well as forms in general.

Controls Overview
You can set all the properties you want on a form, but if you don’t have any controls to go onto the form,
it will remain boring, as just mentioned. There are over 80 Windows Forms controls that can be used, so
going through each is a little unreal. You have already used a couple of the more common controls such
as the TextBox and Button controls throughout the book thus far. You will use those two again, as well
as the MenuStrip control, in this chapter. In the following chapter, you will see how to take advantage
of some additional controls to create various dialog boxes you can use in your applications.

Controls supplied by C# Express can have different purposes. Some can be used in the place of others.
Some controls are used

❑ Strictly for display. The Label control displays information that is entered into its Text property.

❑ For both entry and display of information. The TextBox control is one of these controls. You
can use it to display information on a form, or to allow the user to enter data.

❑ To perform tasks. The Button, MenuStrip, and TaskStrip controls cause events to occur that
you can program tasks to perform. For example, on the Button control, the Click event can be
programmed.

As with forms, controls have properties you can set to have them react the way you desire, depending
on the need.

You can rearrange the display of the categories in the toolbox, because of this the categories in your
Visual Studio may be arranged differently than those in this book. However, the tools listed in the
categories should be the same.

137

Working with Forms and Controls

13_589555 ch08.qxd 12/29/05 8:36 PM Page 137

Control Properties
Much like form properties, you click the control with the property you want to set and modify that
property. The categories of properties for controls are the same as those used for forms. Each control
will have various properties, depending on that control’s purpose. There will be some properties such
as Height and Width that are on a number of the controls.

As various controls are used in the samples, some of the properties will be discussed at that point. Topics
and controls also will be discussed as the calculator is created.

The MenuStrip Control
After creating the form for the calculator, you will want to put a MenuStrip control onto the form. The
MenuStrip control is used to place menus on your forms. You can find the MenuStrip control in the
toolbox under the category Menus & Toolbars. Besides the MenuStrip control the following controls can
be found:

❑ ContextMenuStrip. Used to create a right-click menu, also called context help menu.

❑ StatusStrip. Broken up into individual panels, this control enables you to display various
information at the bottom of a form.

❑ ToolStrip. Creates toolbars on forms.

❑ ToolStrip containers. When placed on a form, this control can contain other strip controls such
as MenuStrip, StatusStrip, and ToolStrip controls.

Depending on the task you want to accomplish, you will choose which control to use.

With the MenuStrip control, you click the control in the toolbox and drop the control onto the desired
form. The control will appear as a strip across the top of the form with the text “Type Here” displayed.
In addition, you will see the component displayed in the bottom of the form.

As you type the text in the place labeled “Type here,” the MenuStrip control displays two more menu
option choices to use, one to the right and one below. You can see this in Figure 8-13 where the top menu
choice Edit is entered into the MenuStrip control placed on the calculator form.

Figure 8-13

138

Chapter 8

13_589555 ch08.qxd 12/29/05 8:36 PM Page 138

To add additional menu choices, the next item over or down is filled in. To add code to one of the menu
choices, you double-click the choice and an event handler method will be created. By adding the &
before the letter of your choice, you can use Alt + the letter to perform the action.

Try It Out Adding the MenuStrip Control to the Calculator Form
In this Try It Out, you add a MenuStrip control to the calculator. First though, you will add an About
form to display information about the current application, in this case the calculator. Lastly, you add
code to open the new form from the About Box choice on the menu. So, using the project created for
this chapter:

1. Right-click the C# project file, located in the Solution Explorer.

2. Choose Add ➪ New Item . . . from the right-click menu.

3. Choose About Box for the item template to use.

4. Type frmAboutBox for the name of the form, as shown in Figure 8-14.

Figure 8-14

5. Click Add. The new About Box form is now added to the project. You can see the form in
Figure 8-15.

You can take this time to fill out the information desired in the about box form, but for this
example you just need to add code to close the About box.

6. Double-click the OK button. The code file opens and the routine for the okButton Click event
is displayed.

7. Add the following line of code between the open and closing curly brackets of the
okButton_Click routine:

this.Close();

139

Working with Forms and Controls

13_589555 ch08.qxd 12/29/05 8:36 PM Page 139

Figure 8-15

This is all it takes to close a form using the Close method of the current form you are in. Now it
is time to go back to the frmCalculator and add the MenuStrip control to the form.

8. Switch back to the frmCalculator form.

9. Add a MenuStrip control on the form from the toolbox.

10. Type in &Edit for the first top menu choice, &View for the second top menu choice, and &Help
for the third top menu choice (see Figure 8-16).

Figure 8-16

11. Type About Calculator in the choice under the Help feature.

12. Double-click the About Calculator menu choice. The code file appears.

13. Add the following code to display the about box form:

private void aboutCalculatorToolStripMenuItem_Click(object sender,
EventArgs e)

{
frmAboutBox frm = new frmAboutBox();
frm.ShowDialog();

}

140

Chapter 8

13_589555 ch08.qxd 12/29/05 8:36 PM Page 140

The menu is now complete for our purposes. You have dealt with TextBox and Button controls through-
out the book. For the calculator, you will be using one TextBox and a number of Button controls. Other
than changing the fore color of some of the buttons, you will mainly be dealing with moving and resizing
the controls.

Moving, Aligning, and Resizing Controls
You have had some experience moving and resizing controls in this chapter already, but I wanted to go
through it one more time and show some of the tools provided for moving and resizing controls when
dropping controls.

When manipulating the controls one at a time, the C# Express editor does an awesome job of giving you
guides to moving and resizing your controls. When you are moving or resizing a control by other con-
trols, blue guide bars appear to guide you as you move or size the control based on the bars. You can see
an example of this in Figure 8-17.

Figure 8-17

Besides using the resize handles to manipulate the size of the controls, you can use another method
where multiple controls can be moved, aligned, and resized all at the same time.

When performing one of the tasks just mentioned, you will highlight all the fields you want to manipu-
late. You can do this one of two ways:

141

Working with Forms and Controls

13_589555 ch08.qxd 12/29/05 8:36 PM Page 141

❑ Lasso method. Place the cursor just to the outside of one of the four corners of the controls you
want to work with, and then, holding the left mouse button, drag the cursor to the opposite cor-
ner of the set of controls.

❑ Clicking the controls individually. Click each of the controls while holding down the Shift or
Ctrl key.

You can set various common properties on multiple controls at the same time. To accomplish this, you
can set the property as it is displayed in the Properties sheet.

Regardless of which method you use, you will want to click the control that you want the other control
position, size, or alignment the controls to be based on. You can see this done in Figure 8-18 where the
controls selected are highlighted differently than the other controls.

Figure 8-18

Once you have chosen the controls you want to manipulate, the Layout toolbar appears, shown in
Figure 8-19.

Figure 8-19

The Layout toolbar is broken up into major categories, which also are displayed on the Format com-
mand. Those categories are Align, Make Same Size, Horizontal Spacing, and Vertical Spacing. Each of

142

Chapter 8

13_589555 ch08.qxd 12/29/05 8:36 PM Page 142

these categories has different options that you can choose based on your needs. For example, you will
use the Align category to line up the buttons displayed on the calendar control.

Try It Out Adding and Organizing TextBox and Buttons for the Calculator
Using the form you created in the last couple of Try It Outs:

1. Open frmCalculator.

2. Locate and add a TextBox control from the toolbox.

3. Set the Name property of the new text box to txtValue.

4. Drag and drop four button controls used as the memory buttons. They will look much like the
buttons did in Figure 8-18, only with four buttons instead of three.

5. Highlight the four controls either by using the Lasso method mentioned or by holding the
Shift key and clicking each of the controls.

6. Choose Red for the fore color of all four controls highlighted.

7. Using the options on the Layout Toolbar, align and size the controls as desired to match
the original Calendar application. You can see what the four controls should look like in
Figure 8-20.

8. Type the values for the Text property of each of the button controls: MC, MR, MS, and M+.

Figure 8-20

143

Working with Forms and Controls

13_589555 ch08.qxd 12/29/05 8:36 PM Page 143

That’s all there is to it. Taking the steps outlined here, you can look at the Calculator application and lay
out the rest of the buttons.

Working with MDI Forms
As previously mentioned in the section called “Form Application Types,” earlier in this chapter, it takes
longer to explain the concept behind the full name of multiple-document interface, or MDI, than it does
to discuss the steps for using it.

C# Express has gone to a lot of effort to make the use of MDI as painless as possible. They have made the
majority of the setup for using MDI forms to be accomplished by setting properties. For the example dis-
cussed earlier in the book, only one line of code had to be used, and one property on the parent form
needs to be set.

As a refresher, take a look at the MDI forms in Figure 8-21

Figure 8-21

The MDI Form Property
MDI has one form that is specified as the parent, and all other forms (child forms) will be opened within
the parent form. This is an interface that is used sometimes by applications and is fairly easy to accom-
plish. The form property you will set is called IsMDIContainer and is located in the Window Style cate-
gory of form properties.

144

Chapter 8

13_589555 ch08.qxd 12/29/05 8:36 PM Page 144

The MDI Line of Code
Once you have set the IsMDIContainer property in the parent form, then all forms opened in the appli-
cation can be assigned that form as the parent. To accomplish this, after declaring the form reference
variable and before using the Show method of the form, you will set the MdiParent property to be the
current form (parent form) using the this object, which is a reference (or points) to the current form.
The code just discussed in its entirety looks as follows:

frmMDIChild frm = new frmMDIChild();
frm.MdiParent = this;

frm.Show();

Just as with other forms, you can open the child form using code behind a button, or in this case, a menu
item. Under the File item in Figure 8-22, there is a command to open a child form. The preceding code is
used.

The Optional MDI Menu Property
Last, before getting to the Try It Out, there is another property you can set on the menu that takes advan-
tage of the fact the form the menu is on is an MDI container. The property, MDIListWindowsItem, is set
to the name of the menu choice that you want to list the opened child windows on. This is normally set
to open with the caption of Windows on the main menu of the form.

You can see how the list is displayed in Figure 8-22.

Figure 8-22

145

Working with Forms and Controls

13_589555 ch08.qxd 12/29/05 8:36 PM Page 145

You will notice that forms displayed in Figure 8-22 are the same form open again and again. Normally
you would have the code open different forms depending on the task you are accomplishing with the
application you are creating. You could also open the same form but with different controls on them.

Try It Out Creating MDI Forms
To create the MDI forms, you will add two forms to the chapter application:

1. Right-click the C# project file, located in the Solution Explorer.

2. Choose Add ➪ New Item . . . from the right-click menu.

3. Choose Windows Form for the item template to use.

4. Type frmMDIChild for the name of the form, and click Add.

5. Set the Text of the form to be “MDI Child Form.” The form is created as shown in Figure 8-23.

Figure 8-23

6. Choose Add ➪ New Item . . . from the right-click menu.

7. Choose Windows Form for the item template to use.

8. Type frmMDIParent for the name of the form, and click Add.

9. Set the Text of the form to be “MDI Parent Form.” The form is created as shown in Figure 8-23.

10. Drag and drop a MenuStrip control onto the form.

11. Type &File where it currently says Type Here.

12. Type &Window in the place to the right where it says Type Here.

13. Click back on the File menu choice.

14. Type Open Child Form in the place below that says Type Here. You can see what the form looks
like in Figure 8-24.

146

Chapter 8

13_589555 ch08.qxd 12/29/05 8:36 PM Page 146

Figure 8-24

15. Double-click the menu item that now reads “Open Child Form.” The code file is opened for
the form.

16. In between the curly brackets, type the following lines of code:

frmMDIChild frm = new frmMDIChild();
frm.MdiParent = this;
frm.Show();

17. Click the MenuStrip control you added to the form.

18. Set the MdiWindowListItem property of the TabStrip control to be windowToolStrip.

19. Click the frmChapter8Main; then double-click the button with the text “MDI Forms.”

20. Type the following lines of code in between the curly brackets:

frmMDIParent frm = new frmMDIParent();
frm.Show();

21. Press F5 to run the application. You will now see the forms open within the parent MDI form.

Summary
Forms and controls play a big part in creating your applications. Jumping in to use them is the best way
to understand them. Once you have created a few forms, placed controls on them, and modified the
properties of both the forms and controls, you are on your way to knowing how to create Windows
Forms applications. But besides knowing the mechanics, there are certain standards you want to make
sure that you utilize so that the users have a consistent and efficient experience.

147

Working with Forms and Controls

13_589555 ch08.qxd 12/29/05 8:36 PM Page 147

There are a couple of different options when creating Windows Form applications: MDI and SDI. Which
one you choose will depend on what you what you are trying to accomplish with the application. How-
ever, forms are only as powerful as the controls used on them. This chapter showed you how to use vari-
ous controls, resize and move those controls, as well as set various properties needed to take advantage
of the controls. You saw that by adding common controls such as the TextBox, Menu, and Button, you
can reproduce the look of even as common an application as the Microsoft Calculator.

Exercises
1. What do MDI and SDI stand for?

2. What are switchboards used for?

3. What is the difference between a ToolStrip and ToolStripContainer control?

4. How do you add code to the Click event on a MenuStrip control?

148

Chapter 8

13_589555 ch08.qxd 12/29/05 8:36 PM Page 148

9
Adding Dialog Boxes

and Rich Text to
Your Application

In Chapter 8, you saw how to design and create a calculator much like the actual Microsoft calcu-
lator included in Windows. The purpose was to get you comfortable with working with forms
and controls, as well as setting properties for both. You will be using those skills in this chapter
and throughout the book. When using the TextBox control discussed thus far in the book, you
can put regular text in it, and even multiple lines of text. However, if you want to do anything
more with the text like use fonts or colors, you need to use a more advanced control such as the
RichTextBox control. Rich text is a format used by Word documents to include font and colors,
paragraphs, bullets, and even load and save the text to rich text files.

To take advantage of the RichTextBox control, you want to be able to specify the file to open and
save which fonts and colors to use, and more. C# Express and .NET provide controls to accomplish
this using dialog controls. In this chapter, you create an application that utilizes rich text. Topics
include the following:

❑ An overview of some of the features of RichTextBox control

❑ Working with the RichTextBox control on a form

❑ Introduction to some of the useful dialog controls

❑ How to use the dialog controls with the RichTextBox control

Introducing the Application
As mentioned in the introduction to the chapter, the RichBoxControl is used on forms to work
with rich text in your applications. This coupled with the use of dialog controls open wide the
possibilities of what you can do with your applications, with very little programming. As a matter
of fact, I went crazy just getting the sample application built for this chapter. I didn’t want to stop
adding features. The application is show in Figure 9-1.

14_589555 ch09.qxd 12/29/05 8:45 PM Page 149

Figure 9-1

You can see the following features displayed in Figure 9-1, some of which use dialog boxes:

❑ Load and save files. Using the Open and Save File dialog boxes, you can open this file, called
Chapter6.rtf, make changes, and save it again. You can see the Open File dialog box in
Figure 9-2.

Figure 9-2
150

Chapter 9

14_589555 ch09.qxd 12/29/05 8:45 PM Page 150

❑ Various colors. You can set the color of text to basic or custom colors. The color dialog box can
be seen in Figure 9-3.

Figure 9-3

❑ Different font sizes used. You can choose all the Windows fonts and their styles such as size,
underlining, bold, and italic. The dialog box can be seen in Figure 9-4.

Figure 9-4

❑ Three types of alignment. The choices included left, center, and right alignment.

❑ Zoom feature. You can zoom in and out, and program what increments you want to zoom
out by.

151

Adding Dialog Boxes and Rich Text to Your Application

14_589555 ch09.qxd 12/29/05 8:45 PM Page 151

The last two features don’t utilize dialog boxes. All the features just listed are found on the menu
that was added, displaying File, Edit, and View on the main menu. The menu options are broken up
as follows:

Menu Feature Control Used

File Open OpenFileDialog

Save SaveFileDialog

Exit None

View Zoom In RichTextBox

Zoom Out RichTextBox

Format Colors ColorDialog

Fonts FontDialog

Alignment RichTextBox

One of the most exciting features is the fact that with each of the options outlined in the preceding table,
you can get away with writing as little as two lines of code — although in the case of the SaveFileDialog,
additional lines of code are discussed to show you how to enhance the application. Now let’s get started by
creating the initial form and laying out the menu structure discussed in the preceding table.

Try It Out Creating the Form
To get started, you will create a Windows Form application and then add a menu onto the form:

1. Create a Windows form.

2. Rename the form frmRichTextEditor.

3. Type My Rich Text Editor into the Text property of the form.

4. Resize the form using the resizing handles to be large enough to display a decent amount
of text.

5. Drag and drop a MenuStrip control onto the form.

6. Fill out the menu with the specified options. You can see the base form with the File menu
options displayed in Figure 9-5.

Remember that you can specify accelerator keys by placing an & in front of the letter you want to use.
Also, if you want to add a separator in the menu, click the arrow displayed by the text Type Here, and
choose a separator.

The Alignment menu item has an additional three items: Left, Center, and Right.

That’s all you need to do for now. You will be adding code for each of the options as they are discussed
in the rest of the chapter.

152

Chapter 9

14_589555 ch09.qxd 12/29/05 8:45 PM Page 152

Figure 9-5

Working with the RichTextBox Control
There have been RichTextBox controls for previous programming environments, and if you have used
the Windows Common Controls, used prior to .NET, then you may have used a RichText control that
has similar features. The way to take advantage of the RichTextControl, located in the toolbox above
the TextBox control, is to drag and drop the control onto the form, and then utilize its properties,
methods, and events, just like other controls you use.

In addition to learning the control features, you will learn how to take advantage of the Dock property
found on many of the Windows Forms controls. In fact, let’s discuss those now.

Docking the RichTextBox Control
When you place a control on a form, and resize the form at runtime, the form usually stays the same
size. Sometimes this is fine, but then sometimes, as shown in Figure 9-6, the form can look strange.

The form can look utterly wrong where the form is larger but the control stays small. It would be conve-
nient to the user to have it grow with the form. To accomplish this, you can specify where you want the
control docked. Set the Dock property of the RichTextBox control. When setting the Dock property,
you can specify which edge of the form you want to have the control docked to. You can specify to fill
the form by clicking in the middle of the design prompt, as shown in Figure 9-7.

Then, when you open the form, the control will hug all the edges, and the menu, on the form.

153

Adding Dialog Boxes and Rich Text to Your Application

14_589555 ch09.qxd 12/29/05 8:45 PM Page 153

Figure 9-6

Figure 9-7

Try It Out Adding the RichTextBox Control and Setting the Dock Property
Using the form created in the last Try It Out:

1. Drag and drop a RichTextBox control onto the form from the toolbox. Make a note of the name
of the control created. By default, if no other RichTextBox control has been used on the form, it
will be called richTextBox1.

2. Open the Properties window by choosing View ➪ Properties Window.

154

Chapter 9

14_589555 ch09.qxd 12/29/05 8:45 PM Page 154

3. Click the drop-down arrow next to the Dock property.

4. Click the center block, as was shown in Figure 9-7. The control now fills the form. It’s time now
to test the form.

5. Press F5. The form opens, displaying the menu and the RichTextControl.

6. Type some text into the RichTextBox control on the form.

7. Resize the control by clicking the edge and using the resize handles on the form. You will notice
the control expanding and contracting with the form.

Note that you can also use Cut, Copy, and Paste by default with the RichText control. It’s time now to
move on and look at other properties of the RichTextBox control.

Some Other RichTextBox Control Properties
As with the majority of the controls you have access to with C# Express, there are far more properties
methods and events than there is space for in a section of this chapter. However, in the following table,
you will see some interesting properties used in this example, as well some others. Some of them can be
accessed both at design and runtime and some only at runtime.

Name Description

AcceptsTab Specifies whether or not you can use tabs within the
RichTextBox control or just have the focus move to another
control.

AutoWordSelection As you move the cursor in the RichTextControl, this property
is used to specify whether words are highlighted or not.

BulletIndent Specifies number of spaces indented when utilizing bullets in
the text.

Margins Set the margins for the text including right, left, top, and
bottom.

SelectionAlignment Used for setting the alignment of a paragraph at runtime.
Choices here are from the enumerator HorizontalAlignment,
specifically: HorizontalAlignment.Left,
HorizontalAlignment.Center, and
HorizontalAlignment.Right.

SelectionBullets Toggles bullets on and off for selected text. Set at runtime.

WordWrap Turns on and off word wrap when reaching the end of the line.

ZoomFactor By specifying values, you can zoom in and out on text.

There are a number of other selection type properties in addition to the two mentioned in the prior table.
Many of the properties mentioned here help to give you some of the features found in Word itself, with-
out any programming.

155

Adding Dialog Boxes and Rich Text to Your Application

14_589555 ch09.qxd 12/29/05 8:45 PM Page 155

For an example of how to use some of the properties mentioned in the preceding table, you will use
SelectAlignment and ZoomFactor to add a couple of features.

Try It Out Adding Alignment and Zoom Features to Your Rich Text Editor
Using the form you have been working with in this chapter:

1. Double-click the File ➪ Exit menu item of the MenuStrip control.

2. Type the following line of code to the routine:

Application.Exit();

3. Add the three Alignment menu choices if you haven’t already, as shown in Figure 9-8.

Figure 9-8

4. Double-click the leftToolStripMenuItem control. C# Express creates the Click event routine.

5. Type the following line of code in between the start and end curly brackets of the routine:

richTextBox1.SelectionAlignment = HorizontalAlignment.Left;

The routine now looks as it does here:

private void leftToolStripMenuItem_Click(object sender, EventArgs e)
{

richTextBox1.SelectionAlignment = HorizontalAlignment.Left;
}

156

Chapter 9

14_589555 ch09.qxd 12/29/05 8:45 PM Page 156

6. Repeat Steps 2 and 3 for the Center and Right alignment menu choices, using the different mem-
bers of the enumeration.

7. Double-click the Zoom In menu choice.

8. Double-click the zoomInToolStripMenuItem control. C# Express creates the Click event
routine.

9. Type the following line of code in between the start and end curly brackets of the routine:

richTextBox1.ZoomFactor += 2f;

This increments the ZoomFactor property by two. The f beside the 2 is another way to specify
casting the value as a Float value.

10. Double-click the zoomOutToolStripMenuItem control. C# Express creates the Click event
routine.

11. Type the following line of code in between the start and end curly brackets of the routine:

if (richTextBox1.ZoomFactor > 1)
richTextBox1.ZoomFactor -= 2f;

This decrements the ZoomFactor property by two. The reason for the if statement is to make
sure you don’t decrement the value below 1.

The code for all five choices can be seen in Figure 9-9.

Figure 9-9

12. Press F5 to test the application. You can then choose the different alignment and zoom options
to test.

157

Adding Dialog Boxes and Rich Text to Your Application

14_589555 ch09.qxd 12/29/05 8:45 PM Page 157

Remember that there are a lot of methods and properties you can work with as well on the RichTextBox
control itself. If you type the richTextBox1 and the following period, you will see the total list of proper-
ties, methods, and events. You also can use the Object Browser to take a look.

Introducing the Dialog Controls
The standard dialog controls have been around for quite a few versions of Windows. In development
environments prior to .NET, you used either Windows API calls or Windows Common ActiveX
Controls. Each of these had issues that I won’t bother going into, so you will have more time to work
with the actual controls. The major controls you will be using, as mentioned in the first sections, are
the OpenFileDialog, SaveFileDialog, ColorDialog, and FontDialog controls. Each name is pretty
self-explanatory as to what they perform.

To use each of these, you can set various properties that are specific to each. The ShowDialog() method
is used to display each of the controls used in remaining examples. So all you need to do is drag and
drop each control onto the form, then set the necessary properties and call the ShowDialog() method.
Then, depending again on which control you are using, you will utilize the results from the control with
the RichTextBox control.

To work through the controls, I will take them one at a time as they are placed on the form. I will start off
easy with the ColorDialog control and then move onto the FontDialog control.

Using the ColorDialog Control
You can find the ColorDialog control in the Dialogs category of controls in the toolbox. There are not a
lot of properties, methods, and events to use on the ColorDialog because it is a pretty simple control.
As mentioned, the method you will use to display the dialog box will be the ShowDialog() method.
The dialog box can be seen again in Figure 9-10.

Figure 9-10

158

Chapter 9

14_589555 ch09.qxd 12/29/05 8:45 PM Page 158

Once you have displayed the dialog box, and the user has responded, you set the color of the text
selected in the RichTextBox control to the color specified. To accomplish these two tasks, you use the
following two lines of code:

if (colorDialog1.ShowDialog() == DialogResult.OK)
richTextBox1.SelectionColor = colorDialog1.Color;

And that’s all there is to it to use it in its simplest form.

Try It Out Adding the ColorDialog Control to Your Form
Using the form you have been working with in this chapter:

1. Drag and drop a ColorDialog control from the toolbox into the bottom section of the form edi-
tor, beside the menuStrip1 control. C# Express will organize the control for you. You can see
what the designer will look like in Figure 9-11.

Figure 9-11

2. Double-click the Format ➪ Color choice of the MenuStrip control. The code file opens with the
Click event displayed.

3. Type the following lines of code in the body of the Click event routine:

if (colorDialog1.ShowDialog() == DialogResult.OK)
richTextBox1.SelectionColor = colorDialog1.Color;

159

Adding Dialog Boxes and Rich Text to Your Application

14_589555 ch09.qxd 12/29/05 8:45 PM Page 159

4. Press F5 to test the application.

5. Type text to test; then highlight some of text.

6. Choose Format ➪ Color from the menu on the Rich Text Editor form. The Color dialog box
opens.

7. Select a new color, and click OK. The text that was highlighted in the form will be changed to
the new color.

Using the FontDialog Control
The FontDialog control, just like the dialog box itself, is a little more complicated than the
ColorDialog control. Because there are more options to the control such as whether or not you want
the various buttons, like the Apply button (ShowApply property), to be visible. Another worthwhile
property is the ShowEffects property. This property, set to True by default, displays the Strikeout and
Underline choices. You can also find the FontDialog control in the Dialogs category of controls in the
toolbox. You will use the ShowDialog() method to display the dialog box. The dialog box is shown
again in Figure 9-12.

Figure 9-12

Once you have displayed the dialog box, and the user has responded, you set the font settings of the text
selected in the RichTextBox control to the font specified. To accomplish these two tasks, you use the fol-
lowing two lines of code:

if (fontDialog1.ShowDialog()== DialogResult.OK)
richTextBox1.SelectionFont = fontDialog1.Font;

This should look familiar, since it is almost the same as the code used for the ColorDialog.

160

Chapter 9

14_589555 ch09.qxd 12/29/05 8:45 PM Page 160

Try It Out Adding the FontDialog Control to Your Form
Using the form you have been working with in this chapter:

1. Drag and drop a FontDialog control from the toolbox into the bottom section of the form edi-
tor, beside the ColorDialog control.

2. Double-click the Format ➪ Font choice of the MenuStrip control. The code file will open with
the Click event displayed.

3. Type the following lines of code in the body of the Click event routine:

if (fontDialog1.ShowDialog()== DialogResult.OK)
richTextBox1.SelectionFont = fontDialog1.Font;

4. Press F5 to test the application.

5. Type in text to test; then highlight some of text.

6. Choose Format ➪ Font from the menu on the Rich Text Editor form. The Font dialog box opens,
as shown in Figure 9-13. (I also used the zoom feature to make the text larger.)

Figure 9-13

7. Select a new font, and click OK. The text that was highlighted in the form is changed to the new
font.

There are a number of font options you can specify, including the special effects and sizes. Good stuff.

161

Adding Dialog Boxes and Rich Text to Your Application

14_589555 ch09.qxd 12/29/05 8:45 PM Page 161

Using the OpenFileDialog Control
While the controls that have been discussed thus far in the chapter have been great for modifying the
different fonts and colors of the text in the RichTextBox control, it doesn’t do you much good to make
all the changes and not be able to save the text to a file. It also is useful to be able to open files as well as
save them.

The OpenFileDialog has a number of different properties you can set to determine the default settings
of the dialog box displayed. Place the control onto the form. You can then highlight the control and see
the properties you can work with, as shown in Figure 9-14.

Figure 9-14

For the purposes of this example, you will be setting the DefaultExt, FileName, and Filter to your
own specifications. After setting the properties as you want them, you can then call and open the dialog
box in code with as little as the following lines of code:

if (openFileDialog1.ShowDialog() == DialogResult.OK)
richTextBox1.LoadFile(openFileDialog1.FileName);

Try It Out Adding the OpenFileDialog Control to Your Form
Using the form you have been working with in this chapter:

1. Drag and drop an OpenFileDialog, from the Dialogs category in the toolbox.

2. Highlight the openFileDialog1 control with the Properties window open.

3. Type RTF for the DefaultExt property. This places “RTF” at the end of your files for the exten-
sion by default.

162

Chapter 9

14_589555 ch09.qxd 12/29/05 8:45 PM Page 162

4. Type RTF Files|*.rtf in the Filter property. This property limits the files displayed in the file
dialog boxes to those that meet the criteria — in this case, those with the extension of *.rtf.

5. Double-click the File ➪ Open menu item in the menuStrip1 control. The editor opens with the
Click event displayed.

6. Type the following lines of code in the body of the routine:

if (openFileDialog1.ShowDialog() == DialogResult.OK)
richTextBox1.LoadFile(openFileDialog1.FileName);

7. Press F5. The application starts, with the Rich Text Editor you created opened.

8. Choose File ➪ Open from the form. The Open File dialog box opens, as shown in Figure 9-15.

Figure 9-15

9. Click the Open button to open the file.

Note that if you were to click the Cancel button, an exception would occur. You could add code to
error-trap whether or not the user has specified a file. But I will leave that to you. Let’s move on to
saving the file.

Note that the Chapter9.rtf file is a sample file that I have supplied for you. You can find it in the
Chapter 9 folder with the other samples for this chapter. If you save this file using the next section, then
you will have to download it again if you want to use it as it was originally.

163

Adding Dialog Boxes and Rich Text to Your Application

14_589555 ch09.qxd 12/29/05 8:45 PM Page 163

Using the SaveFileDialog Control
The SaveFileDialog control has the same properties as the OpenFileDialog does. In fact, to
show you how you can utilize both, I have made the code to use the SaveFileDialog a little more
complicated:

string strFileName = openFileDialog1.FileName;

if (strFileName != “”)
{

if (saveFileDialog1.ShowDialog() == DialogResult.OK)
{

strFileName = saveFileDialog1.FileName;
richTextBox1.SaveFile(strFileName);

}
}
else
{

richTextBox1.SaveFile(strFileName);
}

This code tests to see if the openFileDialog1 control’s FileName property has been set, through open-
ing a file. If not and the FileName property is equal the name of the dialog box, which is the default,
then the SaveFileDialog control is displayed, and the user can specify the file to Save As. If a file has
been specified in the OpenFileDialog, then that name is used. This is how the Save option for a new
file generally behaves, by only asking for the filename if it hasn’t been saved before.

Try It Out Adding the SaveFileDialog Control to Your Form
Using the form you have been working with in this chapter:

1. Drag and drop a SaveFileControl from the Dialogs category in the toolbox.

2. Highlight the saveFileDialog1 control with the Properties window open.

3. Double-click the File ➪ Save menu item in the menuStrip1 control. The editor opens with the
Click event displayed.

4. Type the following lines of code in the body of the routine:

string strFileName = openFileDialog1.FileName;

if (strFileName != “”)
{

if (saveFileDialog1.ShowDialog() == DialogResult.OK)
{

strFileName = saveFileDialog1.FileName;
richTextBox1.SaveFile(strFileName);

}
}
else
{

richTextBox1.SaveFile(strFileName);
}

164

Chapter 9

14_589555 ch09.qxd 12/29/05 8:45 PM Page 164

5. Press F5. The application starts, with the Rich Text Editor you created opened.

You can now test the application by pressing F5 and opening a file already created, or you can edit text
opening a new blank file and then choose File ➪ Save.

Summary
The controls you learned how to use in this chapter can be utilized in just about every application you
create using C# Express. The RichTextBox control is great when you have an application that you need
to edit and work with files other than simple text files. This includes copying information to and from
other applications such as Excel or Word documents, with all the formatting intact!

Using the dialog controls, you can do everything from setting fonts to changing text colors. You can open
and save files using the OpenFileDialog and SaveFileDialog controls. With the various properties,
you can set the dialog boxes to match the task you are trying to accomplish. You will be using the file
dialog boxes throughout the rest of the book, starting in the next chapter.

Exercises
1. What is the name of the enumerator used for setting the SelectionAlignment property of the

RichTextBox control?

2. What is one of the methods you can use in code to display all the dialog boxes displayed in this
chapter?

3. Which property on the RichTextBox do you use to utilize a font from the FontDialog?

4. What happens if you choose File ➪ Open but then click Cancel?

165

Adding Dialog Boxes and Rich Text to Your Application

14_589555 ch09.qxd 12/29/05 8:45 PM Page 165

14_589555 ch09.qxd 12/29/05 8:45 PM Page 166

Part III
Using Data in
Applications

15_589555 pt03.qxd 12/29/05 8:28 PM Page 167

15_589555 pt03.qxd 12/29/05 8:28 PM Page 168

10
Introducing Database

Concepts

There are all sorts of applications you can create to perform various tasks with C# Express. Some
of those programs you create are going to need to work with data. Anytime you need to store data
or information, you can use a database. A database is an electronic method for storing data such as
customer information, invoices, mailing lists, and more. While there are methods for storing and
working with data on the computer other than databases, it makes the most sense to take advan-
tage of the features a database can give you.

This chapter covers data, primarily that used in databases. While you can use data without man-
aging whole databases, having a good understanding of what databases (or in this case relational
databases) are and how to work with them will help you create applications that are more logical,
powerful, and easy to work with. In this chapter, I give a quick introduction to databases and dis-
cuss the following:

❑ What the parts of a database are and how they compare to real-world databases

❑ Kinds of database systems

❑ Relational databases

Getting Star ted with Databases
As you work with computers you quickly realize that everything you do on a computer deals with
data in one sense or another. Whether you are creating a Word document or crunching numbers
with Excel, it is all data. However, not all data belongs in a database, and not all programs are
meant to be used as a database, although if you look at some people’s documents and worksheets,
you may wonder if they are trying to use them as databases. This section explains a few things
about databases, as well as shows you how to use real-world databases every day.

16_589555 ch10.qxd 12/29/05 8:34 PM Page 169

If you have been using Microsoft Office products for a while, you have probably had some experience
with or at least heard of databases. In fact, even if you haven’t used databases on the computer, you
have used them in real life.

Looking at Databases in the Real World
In the real world, there are a never-ending number of tasks and subjects that work as an example
of databases. Every day from the time you get up until the time you go to bed you are dealing with
databases of one kind or another. Here are just a few examples of real-world data:

❑ Mailing lists

❑ School registrations

❑ Checking account information and history

❑ Membership lists

❑ Customer information

And the list goes on and on. While some of these items look like simple topics in themselves, undoubt-
edly additional data for each topic could be flushed out so that more than one topic, what are called
tables in database jargon, would be necessary.

The last entry in the list just displayed is a common example of a real-world database, and is worth dis-
cussing further. Customer information is stored as business records in manila folders, located in a filing
cabinet. In the manila folders customer, information is stored, with either:

❑ One customer’s information stored per folder

❑ All customer information sheets in one folder

Both ways can be analogous to an electronic database and have been used for years in the real world.

In accessing the real-world customer database, you:

1. Open the file cabinet.

2. Search through the cabinet for the folder you are looking for.

3. Pull out the folder.

4. Look through the folder for the information for which you are searching.

5. Take the piece, or pieces, of paper containing the information.

6. Read the data on the page.

7. Modify the data as necessary.

At this point, you also could add new information by filling out a new form or delete information by
throwing away information. (Of course, nowadays you would most likely shred the information for
security reasons.)

170

Chapter 10

16_589555 ch10.qxd 12/29/05 8:34 PM Page 170

It should be noted that the terms below are generic as far as the various database systems are concerned.
These terms are discussed in greater details in the next section.

Tables are used to store data in databases. Fields (columns) are used to store individual pieces of data
such as customer name, address, and so on. The information supplied in the fields makes up a record
(row) in the table. So in this instance, all customer information, such as name, address, city, state,
and so on, together make up a record (row). You will find that these terms are used interchangeably
when various database products such as Microsoft Access (fields, records) and Microsoft SQL Server
(columns, rows) are discussed.

Database Models
Various models of databases exist, two of which are flat-file and relational databases. The relational
model of databases is the most common and is used nowadays for desktop and Web development.
However, before going deeper into the relational database model, you should know about the flat-file
model, including how they store data and their drawbacks.

Flat-File Model Databases
Flat-file model databases store information in single tables, including repeated data. For example, if a
store was selling different kinds of coffee and wanted to track customers, invoices, invoice items, and
suppliers, the database would look like Figure 10-1, which is a flat-file type table.

Figure 10-1

If you look at this figure closely, you may notice it looks like it was created in Excel, which it was. A lot
of new developers and users store data in Excel spreadsheets, thereby creating flat-file tables and
databases without realizing it.

There are a number of problems with the flat-file database model. Here are just a few of the issues:

❑ Redundant data. Entries often get repeated, taking up more space than necessary. In Fig-
ure 10-1, for example, there is no reason to spell out the names of the suppliers each time.

❑ Error prone. When data has to be repeated, there is more of a chance to enter erroneous data
into the table.

❑ Limited columns. Currently, only two products and their information can be entered using the
table structure displayed.

❑ Extra work to update. With the redundant data issue, if you want to make any updates, you
will have to make sure you parse through the other fields and update those values to match.

In addition to the preceding issues, reporting (retrieving) on the data can be problematic as well. Now
take a look at what the relational database model looks like.

171

Introducing Database Concepts

16_589555 ch10.qxd 12/29/05 8:34 PM Page 171

Relational Database Model
Unlike the flat-file database model, which stores all data, including related data, in a single record and
table, the relational database model use tables that are related to one another to store information. For
example, instead of having your coffee invoices all stored in a single table called tblInvoices, the infor-
mation would be stored in related tables, with customer information being stored in one table, invoices
information stored in another, product information in yet another, and so on. Figure 10-2 shows an
example of how the flat-file table in the previous section could be structured into a relational model.

Figure 10-2

This figure was taken from C# Express connected to a SQL Server Express database file called
CoffeeSQL.mdf, located in the main Samples folder. The figure shows the database diagram of the
tables the data is now separated out into, as compared to the single table (spreadsheet) in the previous
figure.

C# Express enables you to connect to both Access databases (*.mdb) and SQL Server database files
(*.mdf). SQL Server Express is included with C# Express, so the majority of the data-oriented examples
and chapters will be using SQL Server Express database files. These are all located in main Samples
folder. How to connect to SQL Server Express and Access files is discussed in Chapter 11.

Take a look at some of the benefits of using relational databases. They are pretty much the opposite of
the issues found in flat-file databases:

❑ Nonredundant data. Because entries are entered once, and other tables point to the data, there
is less redundant data.

❑ Less error prone. When data is entered once in lookup tables, data is then picked from lists.
This lends greater control and prevents input errors.

❑ Unlimited data. Because data is stored in rows (down) versus fields (across), the data is not
limited to predefined structures. For example, when you want to add another product to an
invoice, you simply add another record to tblInvoiceDetails. In the flat file, you would have
had to add a third or fourth product column.

Looking at Figure 10-2, you might think maintaining a relational database involves a lot more work
because of the multiple tables, but you very quickly learn to appreciate the benefits of the relational
database despite the extra work needed in the beginning.

Next, read about the elements that make up relational databases.

Tables: Where Data Is Stored
As mentioned in a note earlier in the chapter, tables are where your data is stored. Tables have specific
elements: fields, primary keys, and indexes.

172

Chapter 10

16_589555 ch10.qxd 12/29/05 8:34 PM Page 172

Columns/Fields
When created, table structures consist of columns (or fields) that represent pieces of data. Columns have
properties that give you control over the data that goes into them. Here are a few of those properties
common to different database systems such as Access and SQL Server:

❑ Name. Column names are what you will refer to when you want to pull information from the
column or assign data to the column. You will want to assign your names to make sense. For
example, for the tblCustomer table, the two columns displayed in Figure 10-3 are named
CustomerID and CustomerName.

❑ Data types. Data types tell the database system how to handle the data placed in the column.
Which data types there are depends on specific database systems. Microsoft Access calls text
data under 255 characters text datatype; in SQL Server, it is nvarchar(255).

❑ Other properties. There are a number of other properties that help control data going into the
columns, and those properties will again depend on which database system you are using.
Some properties, such as Default Value, are used by most systems, but some, such as the
Caption property, are used by Access but not SQL Server.

You can see an example of the table structure for tblCustomers listed in Figure 10-3 with the Customer
column highlighted. The table structure is displayed in C# Express.

Figure 10-3

Primary Key Column

Name Property

Date Type Property

Current Column Highlighted

173

Introducing Database Concepts

16_589555 ch10.qxd 12/29/05 8:34 PM Page 173

Primary and Foreign Key Columns
Notice the callout for the Primary Key column in Figure 10-3. Each table should have a primary key. In
the case of tblCustomers the primary key is the column CustomerID. The primary key makes sure that
each record in a table is unique, and provides the ability to always find a specific record. How primary
keys are specified will again depend on the database system you are using.

Foreign key columns are columns in a table that point to primary key columns in other tables. For exam-
ple, you will see CustomerID in tblInvoice, which is used to match the primary key column CustomerID,
in tblCustomers. Primary and foreign key columns are especially important in the use of relations. When
picking a primary key, you must make certain that the data in the field will be unique values in each row
of the table. Both Access and SQL Server have a means to auto-generate this field for you. In Access it is
called AutoNumber, and in SQL Server it is the Identity column.

It’s All about Relationships
Relationships are how you tie (relate) data together using separate tables. In Figure 10-2 you saw a
database diagram for CoffeeSQL.mdf. In Figure 10-4 you can see the relationships window in Access,
displaying the relationships for Coffee.mdb, the Access version of the database.

Figure 10-4

Three types of relationships are found in relational databases. Because Coffee.mdb mainly uses one
type of relationship, other examples are listed outside that database:

❑ One-to-one relationship. Used when you want to have records in one table match up with indi-
vidual records in another table based on the same primary key in each table. An example of this
in a banking database is a table that stores private information that would match up directly
with a table that stores information that can be viewed by anyone. This is probably the least
used type of relationship, because the use of queries (Access) and views (SQL Server) can limit
the data you access in tables.

❑ One-to-many relationship. This type of relation is used to relate a table such as tblCustomer
(a customer) with tblInvoices (the customer’s Invoices). The way you look at it is that one cus-
tomer can have many invoices. Note that the primary key is in tblCustomer, and the foreign key
is in tblInvoices.

❑ Many-to-many relationship. This is a pair of one-to-many relationships used with three tables.
An example of this is an insurance database. Insurance companies can have multiple customers,
and customers can have multiple insurance companies.

Primary Keys

Foreign Keys

174

Chapter 10

16_589555 ch10.qxd 12/29/05 8:34 PM Page 174

As far as which type of relationship to use, it will depend on the need. All three can be used in the same
database, or just use one type of relationship throughout the database. It really comes down to the data.

Referential Integrity
One of the important aspects of relational databases is maintaining referential integrity of the data. For
example, in the coffee database, a record in the tblInvoices table can’t be created without a related record
in tblCustomers in existence. Another example is that a record in the tblProducts table could not be
added with a record already in the tblSuppliers table.

Depending on the database system, you can set referential integrity up to also help maintain data once
it is in the database. For example, you can specify that a record can’t be deleted in one table, such as
tblCustomers, if records exist in tblInvoices that are related to it.

Another use for referential integrity with current data is to have records deleted in related tables, such as
tblInvoices, when a record is deleted in the table that contains the primary key, in this case,
tblCustomers.

Normalizing Your Data
Normalizing data are the steps taken to take nonnormalized data (flat file) and shape it into what is
called normal (relational) form. Here are the steps:

For first normal form (1NF):

❑ Remove duplicate columns from the table.

❑ Create separate tables for each group of related data, identifying each row with a unique col-
umn or set of columns. This unique column or set of columns would be the primary key.

In the case of the table displayed in Figure 10-2, the Product1, Product2, and so on, and the product spe-
cific information is removed from the main table and broken out into separate rows.

For second normal form (2NF):

❑ Remove subsets of data that apply to multiple rows of a table and place them in separate tables.

❑ Create relationships between these new tables and their predecessors through the use of
foreign keys.

In this case, you would remove the customer information and store it in a separate table, then create a
relationship between the new customer table and the table containing the invoice information.

For third normal form (3NF):

❑ Remove columns not dependent upon the primary key.

Invoice detail is broken out into separate tables at this point, and each set of data is given its own ID,
with a foreign key pointing to the invoice header record.

For fourth normal form (4NF):

❑ Make sure relation has no multivalued dependencies.

175

Introducing Database Concepts

16_589555 ch10.qxd 12/29/05 8:34 PM Page 175

Additional forms are possible, depending on how far you want to take the normalization. The majority
of databases used are in third or fourth normal form.

Working with Various Databases
You’ve read about flat-file and relational databases and now know the differences. There is some addi-
tional information you need to know about the available relational databases and their platforms. Before
getting into the specifics of Microsoft Access and SQL Server specifically, you need to get comfortable
with some terminology.

File Server versus Client/Server
File server databases are where the database is stored in a folder on a file server. When you access the
database, all the data is brought down over the network and is locally processed. Microsoft Access is a
file-server-based database system.

Client/server databases are stored on a server, but when it comes time to process, the processing is per-
formed out on the server, and just the necessary data is brought down over the network. Microsoft SQL
Server is a client/server-type product.

One of the big changes in SQL Server Express 2005 is that the databases files, with the extension of
*. mdf, are more mobile than prior versions. So you can have the power of client/server applications but
pass around the databases more conveniently.

Although with most development environments how you develop against the two types of database
platforms will vary, between C# Express, the data tools included, and .NET, you will develop using the
same methods.

Front and Back Ends
When working with database applications, you have front and back ends. The application created to
control the input and output of the data is called the front end. The database containing the data is the
back end. The application will contain forms, reports, and other programming elements. When you are
connecting to a data source, the data source, such as Microsoft Access or SQL Server databases, are the
back end, and the applications you write are the front end.

The next couple of sections describe the two databases for which C# Express includes tools: Microsoft
Access and Microsoft SQL Server.

Microsoft Access
Perfect for small- to medium-size solutions when used as a back end, Microsoft Access is a popular
database system, with thousands if not millions of installations. Access can also be used as a front end as
well, but that is a topic for another book. You can see Access with the Coffee.mdb open and
tblCustomers displayed in Figure 10-5.

176

Chapter 10

16_589555 ch10.qxd 12/29/05 8:34 PM Page 176

Figure 10-5

Benefits and Issues of Microsoft Access
There are quite a few benefits to use Access over other database products. Some of the positive aspects of
Access are as follows:

❑ Established application. Access has been around for quite a few versions, with Microsoft
enhancing the product with each version. The current version is Microsoft Access 2003.

❑ Powerful report writer. Access is a banded report writer, with bands set up for Report Header/
Footers, Group Headers/Footers, Page Header/Footers, and Detail. You can embed reports
within reports. The Accesdfs report writer is commonly used by other products to create
reports, including Visual Basic and even SQL Server.

❑ Used as front end and/or a back end. It is almost as common to have Access used as a front end
for a SQL Server database as it is to use it strictly with Access. You can link tables in an MDB file
or use an Access ADP file, which is a database project specifically set up to be a front end for a
SQL Server database.

❑ Macro language for beginners and VBA for developers. Access provides a powerful forms
package with the Visual Basic for Applications (VBA) development language behind it.

❑ Database files easy to transfer. Just by using Windows’ copy and paste functions, you can
move/copy Access databases over locally, over a network, or even by storing the database in a
compressed folder and e-mailing the folder.

Now that you’ve seen the benefits of Access, following are some issues that can arise when using Access
for your databases:

❑ Large databases bog down. You can run into problems with large-size databases, if those
databases are not carefully created.

177

Introducing Database Concepts

16_589555 ch10.qxd 12/29/05 8:34 PM Page 177

❑ Large number of users bog down. When creating an application for a large number of users,
you need to be very careful about how the application is created. Otherwise, you can get bogged
down with the querying and updating of data. This is especially true with large databases, as
mentioned in the previous item.

❑ Forms designer can be confusing to use. As powerful as they both are, the form and report
designers in Access can be confusing to use when moving beyond the basics.

❑ Not built for use with the Internet. Because Access is a file server product, and not meant for
the truly high volume you get when using database over the Internet, Access is made more for
use on a local area network.

Access works very well for C# as a back-end database when you have a limited number of people
accessing the data. Access also is a great database to prototype applications in, for later use in another
development language such as C#, and to have the data moved to SQL Server. Because you also can uti-
lize the Access database from other products without having to have a version of Access installed, using
Access as a back end is even that much more worthwhile.

Microsoft SQL Server
Built for small to enterprisewide databases, SQL Server is built for use with other development products
and includes no forms management tools of its own.

In Figure 10-6, you can see the CoffeeSQL database open in C# Express.

Figure 10-6

178

Chapter 10

16_589555 ch10.qxd 12/29/05 8:34 PM Page 178

Benefits and Issues of Microsoft SQL Server
As with Microsoft Access, there are number of benefits to using Microsoft SQL Server, including the
following:

❑ Established application. As with Access, SQL Server has been around for quite a few versions.
At this writing, SQL Server 2000 is the current version.

❑ Robust set of client tools for data management. Spearheaded by Enterprise Manager and Query
Analyzer, SQL Server has a number of tools that help you manage data in your databases.

❑ Extensive SQL language for data manipulation. Using Transact SQL, you can create stored pro-
cedures that can manipulate data in just about any way necessary. Also available is DTS, or Data
Transformation Services, which enables you to create packages to schedule tasks for working
with the information in your database.

❑ Can handle large amounts of data. SQL Server is made for large amounts of data. On a server
that has been properly set up, you can store many gigabytes of data. In addition to the proper
system, the data needs to be normalized and care must be taken when you are creating views
and stored procedures.

❑ Works well with the Internet. Because SQL Server works well with large databases, and large
number of users, it works well as a database for use with the Internet. Of course, when creating
the database, you do need to be conscientious about how much data you are going to be storing
and how many people will be utilizing the database at a time.

The majority of the issues with using SQL Server have been related to the lack of tools. C# Express has
taken care of those by supplying tools that make it much easier to work with SQL Server databases in
the IDE.

Summary
Once you have worked with databases for a while, you will find it a whole new world that can really
increase the number of applications and solutions you can create for users. Just about every company
has database needs that they are handling through various means such as putting the information in
spreadsheets and Word documents. The data stored in these types of applications are generally in the
flat-file format. There are a number of benefits to pulling your data into relational databases, and a
number of relational database systems are available.

C# Express connects directly to two major databases, Microsoft Access and SQL Server. The same tools
are provided for working with either one, as well as classes and controls with C#. The next few chapters
go into detail about using SQL Server database with your C# applications.

Exercises
1. What is the process of converting your data from flat-file format to a relational database format

called?

2. Name the three types of relationships discussed in the chapter.

179

Introducing Database Concepts

16_589555 ch10.qxd 12/29/05 8:34 PM Page 179

3. In Access you have fields and records. What are these elements called in SQL Server?

4. Give a couple of the benefits to using SQL Server databases.

5. Name the extensions of the Access and SQL Server database files.

180

Chapter 10

16_589555 ch10.qxd 12/29/05 8:34 PM Page 180

11
Using SQL Server
Express Features
within C# Express

In Chapter 10, I discussed various aspects of what databases are and how you can use them within
your applications. Microsoft has been working on SQL Server, its premier client/server database,
to make it more developer-friendly for tighter use with C# and their other developer languages
by providing tools in the development environments. To this end, every version of SQL Server is
more scalable, making it easier than ever to pass SQL Server database files. These database files
use the extension.mdf. SQL Server Express, included with C# Express, is the easiest version yet.

SQL Server Express has a set of tools to help you to manage database files for development and
small deployment purposes. In addition to including a copy of SQL Server Express, C# Express
includes a set of data tools including the Database Explorer, which provides almost all the func-
tionality needed for maintaining databases from within the C# Express IDE. In Chapter 12, you
will see how to use various data controls to manipulate data within your applications. In this
chapter, you will:

❑ Be introduced to SQL Server Express and tools included in it.

❑ Learn about the Database Explorer in C# Express.

❑ Work on connecting to an existing database and create new databases within the
Database Explorer.

❑ See how to create the various objects in SQL Server databases.

Introducing SQL Server Express
SQL Server has been around for quite a few years and is mainly known as a large client database
solution. Unlike Microsoft Access, which has had a full set of user and development tools since

17_589555 ch11.qxd 12/29/05 8:31 PM Page 181

version 1.0, SQL Server has generally been considered to be set up and used by big IT departments and
larger companies. While it is true that SQL Server can handle very large databases, and servers can be
linked together to handle some of the largest, Microsoft has been working for a number of years to
deliver a lower-scaled version of SQL Server for single or few users.

The prior version of SQL Server Express was called Microsoft SQL Server Desktop Edition. The latest
edition is much more convenient to use, and it can be either downloaded off the Net for installation or
included in your own setup.

Access to SQL Server
Microsoft is trying harder than ever to have its SQL Server database files take over where Access data-
base files are now used so heavily. The reason is that after you have created an Access database, you
may outgrow it, either by volume of records or number of users, or both. Once this happens, you will
need to convert it into a SQL Server database. Converting a database from Access into SQL Server is
called upsizing. Once you have done this, you need to make a number of changes. If your application,
called the front end, is set up to utilize Access, then some changes need to be made to applications to
then work with the SQL Server database.

Using a database created in SQL Server Express, the database file (*.mdf) can be detached from a SQL
Server Express instance. It can then be attached to a full SQL Server instance with very little change or
effort. The programming in the application is exactly the same.

SQL Server Configuration Manager
One of the tools included with SQL Server Express is the SQL Server Configuration Manager. Rather
than helping you manage databases, this tool helps you manage the system environment on which your
databases will be running. When you install SQL Server Express, the parameters are pretty well set up
as you need them to be for single system use. The majority of the tasks in the SCM are those that are
available with the full-blown version of SQL Server. However, one of the choices, SQL Server, is created
for SQL Server Express to create a default instance of SQL Server locally on your computer. The default
version is called (SQLEXPRESS) and can be seen in Figure 11-1. You can have more than one instance of
SQL Server managed by the SQL Server Configuration Manager. For the purposes of this book, you will
just use the default instance.

Some of the services displayed aren’t available within the SQL Server Express version. For instance,
Report Services are not available. However, you could use SQL Server Configuration Manager to look
at an existing full-blown version of SQL Server 2005.

You should have installed SQL Server Express on your computer when installing C# Express back
in Chapter 1. If you have a problem with the following Try It Out, refer back to that chapter and
install SQL Server Express with C# Express. You can also download and install SQL Server Express
separately.

182

Chapter 11

17_589555 ch11.qxd 12/29/05 8:31 PM Page 182

Figure 11-1

Try It Out Opening and Looking Around the SQL Server Configuration Manager
While at the Windows desktop:

1. Choose Microsoft SQL Server 2005 ➪ Configuration Tools ➪ SQL Configuration Manager from
the All Programs menu. The SQL Server Configuration Manager opens.

2. Click the SQL Server 2005 Services node if it is not already selected. You will then see informa-
tion displayed in the right pane showing the current status of your local version of SQL Server.
This will look as it does in Figure 11-1.

3. You can click around on the left pane to look at the different services.

I wouldn’t really change anything at this point, because it is set up to work as default. As mentioned, for
the purpose of this book you really won’t have much to do with the SQL Server Configuration Manager.

SQL Server Tools in C# Express
When you are developing a database application, the application can be created using C# or any other
development language. If that application works with a database, you are going to need tools for both
connecting and using the database within your program, and also possibly create and modify the objects
while developing the application.

There is quite a bit you can do with SQL Server from within the C# Express IDE. The purpose of those
tools is to make it so that you don’t have to switch back and forth between the tools that come with SQL
Server to modify the database objects such as tables and views. The following sections list what you can
do inside C# Express using the tools provided, and then discuss how you actually use them.

Introducing the Database Explorer
The majority of the work that you need to do as far as working with the structure of a database can be
handled using the Database Explorer. You can see the Database Explorer by choosing View ➪ Database
Explorer. You don’t even need a project open to work in the Database Explorer within C# Express, once

183

Using SQL Server Express Features within C# Express

17_589555 ch11.qxd 12/29/05 8:31 PM Page 183

you have the Database Explorer showing in the same area as the toolbox is displayed. One of the first
things you will do when using the Database Explorer is either connect to an existing database or create
a new database. Once connected to a database, you will have access to the various objects within the
database. You can see an example of this in Figure 11-2.

Figure 11-2

Before actually connecting to a database yourself, take a look at some of the features in the Database
Explorer.

Database Explorer Features
Within C# Express are a number tasks that can be handled within the Database Explorer. If you need to
connect or work with a database when in the editor, you can use the Database Explorer to accomplish
most of the tasks.

Task/Object Description

Connect to Database Add a database connection to an existing database that
resides in a SQL Server instance on your local machine or
network.

Create Database Create a new database and connect to that database; then
add objects described below.

184

Chapter 11

17_589555 ch11.qxd 12/29/05 8:31 PM Page 184

Task/Object Description

Maintain Tables As described in Chapter 10, tables are where you store the
data that is maintained. To store the information, you need
to specify the table structure that tells the database what
kind of data is to be stored.

Maintain Views Because data is stored in related tables, you need a way to
see and work with the data in a format that represents its
original format. For instance, say you want to be able to see
the customer name for an invoice, even if only the Cus-
tomerID is stored with the invoice. Views let you specify
different ways to look at your data.

Maintain Stored Procedures Procedures written in T-SQL that can be called to modify
your data including creating tables; adding, deleting, and
updating records; and viewing data.

The majority of the objects mentioned in this table were discussed in Chapter 10. You will be shown how
to work with them further in the chapters that follow.

Working with Data Connections
To get started actually using the SQL Server tools within C# Express, you need to connect to a database.
This can be a database that exists on your system or one provided with this book. There is a small
database called CoffeeSQL.mdf that is provided in the Samples folder to which you can connect.

When a connection is achieved, you can then perform all the desired actions against the database, either
working with database objects or going on to specify ways to use the database with your projects.

After starting C# Express, choose Tools ➪ Connect To Database. . . . This both opens the Database
Explorer and starts the Add Connection dialog box.

In prior versions of SQL Server, databases were required to be already attached to a SQL Server
instance. That is no longer the case; you can take a database that someone sends to you and connect to it
using the Add Connection wizard. C# Express will create a connection to the database and utilize the
SQL Server instance specified, in this case the SQL Express instance specified by default when you
installed SQL Server Express.

The first page of the Add Connection dialog box is shown in Figure 11-3.

In the figure, you can see two options for security using the databases in SQL Server. For the purposes
of this book, you will be using the default, which is Windows Authentication. You won’t have to worry
about messing with security that way. When you click the Browse button, you can then locate the
database file you want to connect to using a standard File Open dialog box.

Once you have located the database file you want to use, click Open, and the file path and name appears
in the Add Connection wizard. Then click OK to open the Database Explorer. Now click the plus sign
displayed next to the Data Connections label, and you see the database you choose. If you click the plus
sign that appears next to the database, you will see all the object categories in the database, as shown in
Figure 11-4.

185

Using SQL Server Express Features within C# Express

17_589555 ch11.qxd 12/29/05 8:31 PM Page 185

Figure 11-3

Figure 11-4

Okay, you have seen what it looks like to open a connection. It is time for you get busy and do it
yourself.

186

Chapter 11

17_589555 ch11.qxd 12/29/05 8:31 PM Page 186

Try It Open Add a Database Connection to an Existing Database
If you have your own database you want to connect to, you can use that. Otherwise, as mentioned,
you can use a database called CoffeeSQL.mdf that is located in the Samples folder in your folders for
this book.

1. Open C# Express. Don’t open a solution at this point.

2. Choose Tools ➪ Connect To Database The Add Connection dialog box appears, along with
the Database Explorer.

3. Click the Browse button. An open file dialog box with the title Select SQL Server Database File
appears.

4. Locate the CoffeeSQL.mdf or whichever database file you want to connect to. You can see the
CoffeeSQL.mdf file in Figure 11-5.

Figure 11-5

5. Click Open. The database file path and filename is now listed in the Database File Name field
on the Add Connection dialog box.

6. Click OK. The connection is created, and you can browse to the database in the Database
Explorer.

Creating a New Database Using the Add Connection Dialog Box
Creating a new database and a connection to that new database is just about as easy as connecting to an
existing database. Of course, you still have the task of creating the objects such as tables that you want to
use once the database is created. But the cool thing is you can do all of it from within C# Express.

187

Using SQL Server Express Features within C# Express

17_589555 ch11.qxd 12/29/05 8:31 PM Page 187

Instead of specifying an existing database in the open file dialog box, do the following:

1. Give a new name.

2. After giving the new name, click Open. The new name and the path you specified is displayed
in the Add Connection dialog box.

3. Now, when you click OK, an additional dialog box opens that you will need to respond to.

The new dialog box displayed informs you that there isn’t an existing database file with that name and
asks “Would you like to create it?” By responding and clicking Yes, C# Express then creates the database
and then the connection to the database. The dialog box is shown in Figure 11-6.

Figure 11-6

Working with SQL Server Objects
Once you have created the data connection by either connecting to a current or a new database, you can
then go into the database and start managing objects. The following sections walk through some of the
objects you will use most often and how to use them.

Tables are the objects used the most in databases, and because they are actually the objects that hold the
data, they are definitely the base place to start our discussion of the various SQL Server objects.

Table Definitions
As discussed in the previous chapter, tables are made up of columns and rows. When you are working
in the design view of a table, you will be specifying properties for the various columns, such as last and
first name. Depending on what you are trying to accomplish, there are a few ways you can work with
tables in the Database Explorer. For example, if you just want to look at what columns are in a table and
aren’t interested in knowing what the properties are, you can click the desired table, and then the
columns will be displayed below the table title, as shown in Figure 11-7.

If you decide you want to see the properties of the columns or even want to edit (modify) a structure of
a table, you just need to double-click on the table you are interested in. Once you have double-clicked
the table, look at the structure of the table in the middle of the editor where files are normally displayed,
with the column in the table listed above. In addition, a property window is displayed showing the
properties of the columns. In the main properties window on the right, various properties are displayed
for the table itself.

188

Chapter 11

17_589555 ch11.qxd 12/29/05 8:31 PM Page 188

Figure 11-7

Try it Out Display a Table Structure
In this Try It Out, you display a table’s structure and add a column to the table. So, with the CoffeeSQL
database displayed in the Database Explorer:

1. Double-click the table called tblCustomers. As described, the table appears in the middle of the
IDE, as shown in Figure 11-8.

Figure 11-8

189

Using SQL Server Express Features within C# Express

17_589555 ch11.qxd 12/29/05 8:31 PM Page 189

2. Place the cursor in the blank field under Customer Name.

3. Type EmailName for the Column Name; then press Enter.

4. In the Data Type drop-down list, pick NVarChar(50), as shown in Figure 11-9.

Figure 11-9

5. Save the file by choosing File ➪ Save All.

Once you have saved the table information, you can now view the data.

Note that there are a lot of properties you need to set when are first creating a table, such as indexes and
default values. The purpose of this book at this point is to get you started in using C# Express with SQL
Server Express. Creating databases and tables from scratch can take entire chapters, so I will let you
read up on some of those items on your own and show you how to use some of the tools that you have
available.

Viewing Table Data in C# Express
To view the data in the tblCustomers table, right-click the table and choose Show Table Data. The data is
displayed in a data sheet, or grid, format. You can then modify the data as desired. Generally you use
this mode to correct or test tables in the database.

One important thing to know at this time is that you can move around the records using controls at the
bottom of the screen. You can see this screen in Figure 11-10.

190

Chapter 11

17_589555 ch11.qxd 12/29/05 8:31 PM Page 190

Figure 11-10

Notice that the new column is included and is set to NULL. The NULL value means that a field has not
been set and the system does not know what type of value is in there.

There is a powerful toolbar also displayed in Figure 11-11, where one of the choices is Change Type. This
toolbar gives you the ability to change the results set you are looking at into a query that is either a type
view (selectable data) or a stored procedure (bulk updating), depending on what you want to do with it.

Try It Out View Table Data
1. Right-click the tblCustomers table.

2. Pick Show Table Data from the menu. The table appears in the main pane of the C# Express IDE,
as shown in Figure 11-10.

Other SQL Server Objects
There are many other SQL Server objects that you can work with from the Database Solutions, such as
views and stored procedures. While more detail is beyond the scope of this text, there are some good
books out there that provide more information about creating these objects.

You can also work with views in the IDE, as shown in Figure 11-11. The figure shows a view being cre-
ated, where you can see the table it’s based on as well as the grid of fields to use. Lastly, you can see the
result on the bottom of the screen.

191

Using SQL Server Express Features within C# Express

17_589555 ch11.qxd 12/29/05 8:31 PM Page 191

Figure 11-11

You will also learn about some of these features as you continue through the next couple of chapters on
learning about data controls and using ADO.NET in your C# applications.

Summary
Microsoft has gone to a great extent to give you the ability to use C# Express to create usable applica-
tions without necessarily having to use full-blown versions of Visual Studio 2005 and SQL Server. In
fact, to help with this, they have included a scaled-down version of SQL Server with C# Express called
SQL Server Express. Formally known as the MSDE, this version provides developer with the ability to
use SQL Server on a smaller scale for development purposes or even as single-user solutions. They have
even gone as far as to provide the ability to point and connect to a SQL Server database file with the
extension of .mdf.

While SQL Server Express has tools to working with SQL Server databases, C# Express also provides a
number of tools for allowing you to connect to SQL Server Databases and maintaining them right from
within the C# Express IDE using the Database Explorer. With the Database Explorer you can modify the
various objects found with databases such as tables, views, and stored procedures.

192

Chapter 11

17_589555 ch11.qxd 12/29/05 8:31 PM Page 192

Exercises
1. What does MSDE stand for?

2. What are the two main tools provided in SQL Server Express?

3. Which tool do you use in C# Express to work with databases in and out of projects?

4. What is the difference between a view and a stored procedure?

193

Using SQL Server Express Features within C# Express

17_589555 ch11.qxd 12/29/05 8:31 PM Page 193

17_589555 ch11.qxd 12/29/05 8:31 PM Page 194

12
Utilizing .NET Data Controls

Over the last several chapters, you have been introduced to relational databases and, in particular,
to the database tools included in C# Express to use with SQL Server. Besides the tools to work
interactively with data, .NET provides classes and, more importantly, data controls to use data in
your applications. Typical data applications entail binding different controls to fields in tables of a
database, then being able to navigate and work with the data using forms. Editing and updating
customer records are a good example of a typical data application.

In using data controls you will have to learn how to use more than one at the time and how to
use those data controls with each other. Some of the controls that bind to data include TextBox,
ComboBox, and ListBox controls. One of the data controls that you will use on your form is the
DataGridView control. This powerful control enables you to view your data with practically no
programming, just with dragging and dropping it on the form and setting a few properties.

In this chapter, you will read about the DataGridView control and other data controls that you
now use on your forms. The following topics are discussed:

❑ An overview of the data controls available for use

❑ Using data sources in your application and managing them using the Data Sources panel

❑ Working with the DataGridView control

❑ Utilizing TextBox controls with the DataGridView control to display data

❑ Adding a BindingNavigator to manipulate data and save data

Getting Star ted Using Data
in Your Applications

There are a number of ways to utilize data in your applications — some more difficult than others.
The techniques and controls discussed in this chapter are some of the easiest ways. There are some
people who believe that you should be using code to control everything yourself. This is a great

18_589555 ch12.qxd 12/29/05 8:34 PM Page 195

philosophy when you have been building a library of classes to control all the data handling yourself,
such as adding, deleting, and modifying records in tables of a SQL Server database. However, when you
start out and are just learning, you don’t necessary have the luxury to create all your own code.

It is true that a number of code libraries are out there that can take you a long way toward creating the
necessary classes. But, again, to use those classes, you really need to understand how to work with data
in your applications. In the next chapter, I will go into more details about how to work with ADO.NET,
which is used “under the covers” by the data controls discussed in this chapter, to work with data using
your code. For this chapter, I will give you a quick overview of the data controls provided by .NET, start-
ing with data sources.

Starting with Data Sources
You may remember the discussion from Chapter 11 on the Database Explorer. Shown in Figure 12-1, the
Database Explorer is where you maintain your databases from C# Express.

Figure 12-1

If your Database Explorer is not currently displayed, you can do so by choosing View ➪ Database
Explorer. However, while you can manipulate the databases using this tool, it doesn’t connect the data
to your projects themselves. To do that, you need to use data sources.

Data sources are just what the name implies, the source of data for your projects. When you create a data
source, C# Express walks you through the Data Source Configuration Wizard, which first sets up a con-
nection string, usually from databases you have added to the Data Explorer. It then sets up a data set.

Data Sets
A data set is data that you set up to be stored in memory, called cache. Data sets are made up of collec-
tions of tables and relationships. Although this sounds complicated, C# Express goes to a great deal of

196

Chapter 12

18_589555 ch12.qxd 12/29/05 8:34 PM Page 196

trouble to make it so you can use the data controls and not have to deal with specifics of writing each
line of code to perform work with the data set. You will just pick the tables you want to include, and
C# Express generates the code necessary for you. Once you have created the data source and the data
set, then you are able to use them with other controls on the forms by dragging and dropping them
onto the forms.

Using the Data Source Configuration Wizard
The simplest way to create a data source is to use the wizard provided. This utility asks you the follow-
ing questions:

❑ Which type of data do you want to use? The choices are Database, Web Service, and Data
Object. For this chapter, you will be using the first option.

❑ Which data connection would you like to use? You will be using the connection string created
for the database you specified using the Database Explorer.

❑ Which objects in the database do you want to include? By choosing a SQL Server database, you
will have the choices of tables, views, stored procedures, and functions.

Try It Out Create a Data Source
To get going with this chapter’s project, create a new Windows application project. Once this project has
been created:

1. Select Data ➪ Add New Data Source The first page of the Data Source Configuration
Wizard appears, as shown in Figure 12-2.

Figure 12-2

197

Utilizing .NET Data Controls

18_589555 ch12.qxd 12/29/05 8:34 PM Page 197

2. Click Next, leaving the default value of Database. The next two pages ask which connection
string you want to use, which will be the CoffeeSQLConnectionString, created in Chapter 11,
and, finally, which objects in the database to include.

3. Select the tables that you want, as shown in Figure 12-3.

Figure 12-3

4. Click Finish. The data source is created. You will now use that data source for accessing data in
your application.

You can keep track of your data sources in your project by choosing Data ➪ Show Data Sources. When
you do this, the Data Sources panel appears beside the Data Explorer, as shown in Figure 12-4.

Figure 12-4

198

Chapter 12

18_589555 ch12.qxd 12/29/05 8:34 PM Page 198

Notice that the last portion of the name of the data source created is DataSet. DataSet happens to be
one of the data controls that are included for working with data in .NET.

Data Controls Overview
As mentioned, you will be using the various data controls in one way or another depending on the task
you are trying to accomplish. The following table discusses those data controls and their purpose.

Control Purpose

DataSet Used to represent data in memory. Multiple tables can be included
in a DataSet control.

DataGridView Displays data in a gridlike view, so you can browse through the
data.

BindingSource Binds the DataSet control to other controls that can be bound to
data, such as TextBox and ComboBox controls, along with the
DataGridView control, of course.

BindingNavigator Provides navigation for forms and data working with the
BindingSource control.

TableAdapter Not displayed in the toolbox, this control provides the means to
perform updates back to the database. A real workhorse, SQL
commands are created and loaded into various properties of this
controls for performing various tasks including selecting, deleting,
and modifying data.

As with the majority of the controls that you can add to your form from the toolbox, the data controls
can also be added just using code. Most of these controls are actually built around ADO.NET classes,
which are discussed in the next chapter.

One of the cool things about using these controls is that C# Express will generate most of the code neces-
sary for utilizing them in your applications, which is very helpful, since multiple steps have to occur to
set them up. The best way to describe the use of the data controls is to actually add them to the forms
yourself. As you walk through the steps, you will also notice that C# Express adds the additional data
controls needed to provide the necessary functionality for the control you added.

Using the DataGridView Control
For instance, when you want to use the DataGridView control, you just have to drag and drop it
onto the form, and the prompt that appears will let you set up most of the necessary properties (see
Figure 12-5).

199

Utilizing .NET Data Controls

18_589555 ch12.qxd 12/29/05 8:34 PM Page 199

Figure 12-5

If all you want to do is display data using the DataGridView control, all you have to do is literally drag
and drop it onto the form and select some of the items in Figure 12-5. Give it a shot.

Try It Out Add a DataGridView Control
As has been done in most of chapters before this, you will want to create a main form to use as a switch-
board for your sample forms. Once you have done that, you can then create the form that will be used to
display a DataGridView control.

1. Right-click the project, and select Add New Item from the menu.

2. Select Windows Form for the template to use, and name it as desired. For the purpose of this
example, the name frmUseDataGridView was used.

3. Drag and drop a DataGridView control onto the form from the Data Controls section of the
toolbox. The menu in Figure 12-5 appears, without the Choose Data Source field filled in.

If you accidentally lost this window by clicking off it, aim for the black and white arrow in the top right
of the control. The window will appear again.

4. Click the drop-down menu for the Choose Data Source field. A tree view appears with the top
node displaying Other Data Sources.

5. Keep expanding the data sources until you get to tblCustomers, as shown in Figure 12-6.

Figure 12-6

200

Chapter 12

18_589555 ch12.qxd 12/29/05 8:34 PM Page 200

6. Click on tblCustomers. Back in the DataGridView tasks, the Choose Data Source field will then
be filled with tblCustomersBindingSource.

7. Click the Dock in Parent Container link. You see the DataGridView control fill the form.

8. Click off the task pane onto the form anywhere. The Task pane disappears, and the form is then
displayed, with the fields in the tblCustomers table, as well as the new DataSet, DataBinding,
and TableAdapter controls shown in Figure 12-7.

9. Click F5 to test the application. Choose the new form to be displayed, and the data is displayed
in the DataGridView control, shown in Figure 12-8.

If you were to look at the properties of the component used, you would see that they refer to each
other. The BindingSource’s DataSource property is set to the CoffeeSQLDataSet, and the
DataMember property is set to tblCustomers. The DataGridView’s DataSource property is set to the
tblCustomerBindingSource. So you can see how they are all interjoined by setting properties to each
other. Again, it is great that C# Express does all lot of the work for you.

Figure 12-7

201

Utilizing .NET Data Controls

18_589555 ch12.qxd 12/29/05 8:34 PM Page 201

Figure 12-8

Creating a DataGridView with
Single Record Display

There will be times when you want to display just a single form view showing one record on the form at
a time. Accomplishing this takes a little more work, but it also shows off another one of the data controls,
the BindingNavigator control.

BindingNavigator Control
The BindingNavigator control is an interface to the BindingSource control and enables you to dis-
play buttons on your forms for adding and deleting records, as well as for moving around the records
that you are working with. Once again, it is very straightforward to bind controls to data once you learn
the steps to take.

The first thing I do when I am going to create a form using TextBox controls that will be bound to data
is to add all of the controls on the form first, except the data controls. Then, once the TextBox controls
and any other that are needed are positioned where you want them on the form, you can start the pro-
cess of binding them. In fact, you can add a DataGridView control onto the form with the text boxes
with no programming, just by dragging and dropping and then modifying some properties.

Try It Out Display a DataGridView control with TextBoxes
For this Try It Out, create a new Windows Form, in the example frmDisplayIndividualRecords, and then:

1. Add three Label controls, with three TextBox controls, laid out side by side on the form.

2. Type Customer ID, Customer Name, and Email for the Label controls’ Text property.

3. Type txtCustomerID, txtCustomerName, and txtEmail for the Name property for each TextBox
control, beside the appropriate label.

202

Chapter 12

18_589555 ch12.qxd 12/29/05 8:34 PM Page 202

4. Position the controls toward the bottom of the form, leaving room at the top for the
DataGridView.

5. Click the Data Sources pane.

6. Drag and drop the tblCustomers node from the Data Sources pane over onto the top of the form
(see Figure 12-9).

That’s right. A heck of lot happened right there. Not only did the data source cause the DataGridView
to be added to the form, but the needed data controls as well, including the BindingNavigator con-
trol discussed earlier. You can see the buttons that were added because of the control at the top of the
form.

7. Click the first TextBox control, beside the label Customer ID.

8. Click the + symbol next to the (DataBindings) property category. The category then expands to
display (Advanced), Tag, and Text properties.

9. Click the drop-down arrow next to the Text property. The same data source dialog box dis-
played when you were creating the data grid control appears. However, instead of choosing
Other Data Sources as you did last time, choose CustomerID from tblCustomersBindingSource,
as shown in Figure 12-10.

Figure 12-9

203

Utilizing .NET Data Controls

18_589555 ch12.qxd 12/29/05 8:34 PM Page 203

Figure 12-10

When you click CustomerID, the pane closes, and you see the Text property filled in as shown
in Figure 12-11.

Figure 12-11

10. Repeat Steps 7 through 9 for the txtCustomerName and txtEmail TextBox controls.

11. Press F11 to build and run the application. Choose the form that you created to display this
example.

You can move through the records in the DataGridView and see them reflected in the fields below.
So you now have your data synchronized among multiple controls. In addition, you also can move
around using the buttons provided by the BindingNavigator control at the top of the form, displayed
in Figure 12-12.

One of the items included in the buttons up on top is the Save button. With this button, you can make
your changes and save them back into your database.

There you have it. You have created a form that is bound to data and not only has a browse view but
also binds those records to individual fields for data manipulation.

204

Chapter 12

18_589555 ch12.qxd 12/29/05 8:34 PM Page 204

Figure 12-12

Summary
As you are creating applications you will need to work with data from a database. In the past, when
using languages such as C#, doing so used to be a lot of work. Now, with C# Express, the necessary con-
trols and code are created for you as you drag and drop the controls onto your form. With these controls
you can accomplish just about any task you need, including modifying, adding, and deleting records.

You can add data sources into your project and use them for various forms and controls. These data
sources can be viewed using the Data Sources pane. In this chapter you saw how to utilize a
DataGridView control on your form, and how to synchronize it with TextBox controls using a
BindingNavigator control. When a BindingNavigator control is added to a form, a ToolStrip
control is added with buttons for various data actions you need to perform. All of this is performed
without one line of code being written by the developer.

Exercises
1. Which objects do you need to add to your project in order to utilize data in your form?

2. Which control (and underlying class) keeps track of data in memory?

3. What control is used to bind data to controls such as the TextBox control and provide
navigation?

4. What is the difference between the BindingNavigator and BindingSource controls?

205

Utilizing .NET Data Controls

18_589555 ch12.qxd 12/29/05 8:34 PM Page 205

18_589555 ch12.qxd 12/29/05 8:34 PM Page 206

13
Working with ADO.NET

As you drag and drop data controls onto your form, C# Express generates the necessary code to
utilize the controls. When you are starting out, this works great for the majority of the tasks you
need to accomplish. However, as you become more comfortable with the language and your needs
expand, there will come a time when you will want to be able to write your own code to work
with data on your own. To accomplish this, you can use ADO.NET. The code created for the data
controls when you drop them onto the forms, in fact, uses ADO.NET under the covers to accom-
plish necessary tasks. ADO.NET (ActiveX Data Objects .NET) are a set of classes provided by
.NET for working with data in your applications. The great thing about these classes is that you
can use them as you need to or just continue using the data controls. Some of the classes and the
object created by them were introduced in the last chapter, including data sets.

In this chapter, you are introduced to some of the classes that make up ADO.NET and how to use
them. The following topics are discussed:

❑ The history of data access

❑ What is ADO.NET?

❑ Working with the DataSet class

❑ Using SqlConnection and SqlCommand classes

❑ Binding ADO.NET objects to Windows controls

Introducing ADO.NET
Over the years there have been a number of ways that Microsoft has been providing tools for
developers to access data from their applications. During the last 10 years, there have been quite
a few tools provided, such as DAO (Data Access Objects), RDO (Remote Data Objects), and ADO
(ActiveX Data Objects). That’s right, before ADO.NET there was ADO.

19_589555 ch13.qxd 12/29/05 8:30 PM Page 207

Some Data Access History
DAO was originally created to access the Jet database engine. Jet is the database engine used with
Microsoft Access. DAO provided various classes such as the Recordset class, which enabled developers
to load data into memory from their databases and to work with it as needed. While DAO was great
and is still in use today, it was primarily built for use with Jet. When you wanted to use it with other
providers such as SQL Server, you had to use another layer of technology called ODBC (Open Database
Connectivity) drivers and had additional hoops to jump through to utilize these other databases.

To handle the various databases, Microsoft came out with another data access method called ADO. ADO
is a more generic data access method, blending with a layer called OLEDB. OLEDB enables various
providers to create their own interface that can then be utilized by the ADO classes. This meant when
you created an application using ADO and OLEDB, if you had to switch back ends, provided you wrote
your code correctly, all you had to do was change the OLEDB connection. As with DAO, a Recordset
class was created to help you manage record sets as you loaded them from tables in a database into
memory to work with.

At the same time ADO came around, Internet developers wanted to access their data. While ADO
worked up to a point, and is used still used quite a bit, developers still needed more functionality in
some cases. So RDO (Remote Data Objects) came on the scene, which provided the functionality of
accessing remote data.

Welcome ADO.NET
.NET was a huge platform change not only for languages and desktop/Web development but for data
access. ADO.NET was introduced to basically combine the best of both ADO and RDO but also to pro-
vide a more complete set of classes for working with data. ADO.NET consists of multiple classes provid-
ing data controls and data provider classes.

One major change from ADO to ADO.NET is that the main object used for manipulating data is the
DataSet class, introduced in Chapter 12, rather than the Recordset, which merely returns just what
the name implies, a single record set. With the DataSet you can actually store multiple tables and their
relationships in a hierarchical manner. Another big difference is that ADO.NET uses disconnected data.
This means that when you are working on the Internet, you can connect to your database and bring data
over to work on, disconnecting when you do so. After working with the data, you connect again and
update the data. With ADO it all had to be with one opened connection.

When working with ADO.NET, you will use the ADO.NET namespaces provided by the .NET
Framework Class Library. Within the ADO.NET namespaces, you will then specify which data provider
you need to use. The following section discusses those namespaces.

Some ADO.NET Data Classes and Data Providers
When using ADO.NET classes, the following statement needs to be added to your form when you use
the DataSet class:

using System.Data;

208

Chapter 13

19_589555 ch13.qxd 12/29/05 8:30 PM Page 208

For the data provider, it will depend on which one you are using. If you are going to be utilizing data for
SQL Server, the using statement will be

using System.Data.SqlClient;

If you aren’t sure which type you are using, or need to use multiple types of data such as from SQL
Server and Microsoft Access at same time, you will use:

using System.Data.OleDb;

The following table outlines some of the classes that are valuable to developers for accessing data.

Control Name Purpose

DataSet This control is used in conjunction with the other data controls,
storing the results that are returned by commands and the
DataAdapter controls. The DataSet control actually brings back
a hierarchical view of the data. Using properties and collections in
the DataSet object, you can get all the way down to individual
tables, rows, and columns.

DataTable Similar to the Recordset class used in ADO, this control allows you
to work with a single record set of data, rather than a whole data set.
You can also create DataTable objects from DataSet objects.

DataView This control lets you create multiple views of the same table. This
includes looking at data in various states such as deleted, changed,
or sorted.

SqlDataAdapter This control stores and manages what commands you want to
use against a SQL Server database. The commands for selecting,
updating, inserting, and deleting records can be used. The
connection in which to use the commands against is also tracked.

SqlConnection Connection information for the SQL Server provider is maintained
with this control. Used with the SqlDataAdapter and SqlCommand
classes.

SqlCommand This control enables developers to execute SQL statements or stored
procedures to either run bulk operations return data.

The DataSet, DataTable, and DataViews are all available from ADO.NET, whereas the rest of the
objects are available via the SqlClient data provider. All of these classes can be used directly in the
code of your application.

Using ADO.NET Classes in Your Application
To learn how to use the various objects, you will first add a ListBox control onto a form and then popu-
late the control using ADO.NET classes. The first task will be to create a connection string you can use

209

Working with ADO.NET

19_589555 ch13.qxd 12/29/05 8:30 PM Page 209

with the other data provider classes. The string shown in the following code points to the SQL Server
Express database first introduced in Chapter 11.

string strConn;

strConn = “Data Source=\”.\\SQLEXPRESS\”;AttachDbFilename=\”C:\\Documents “;
strConn += “and Settings\\Administrator\\My Documents\\Visual Studio “;
strConn += “2005\\Projects\\CoffeeSQL.mdf\”;Integrated Security=True;User “;
strConn += “Instance=True”;

Remember that the extra backslashes cause the characters that follow to be included in the string.

Populating a ListBox Control
Next, after creating two types of the data controls just mentioned, SqlDataAdapter and DataTable,
you will bind them to a list box to display a list of customers.

SqlDataAdapter sdaCusts =
new SqlDataAdapter(“Select tblCustomers.CompanyName From tblCustomers”,

strConn);

DataTable dtCusts = new DataTable();

sdaCusts.Fill(dtCusts);

The first step is to instantiate a SqlDataAdapter object, in this case passing the SQL string and the
connection string (strConn). Next, a DataTable object is created. Lastly, the Fill method of the
SqlDataAdapter is used to fill the DataTable object with data.

Once this has occurred, the DataTable will be used as a DataSource for the ListBox control. Also, the
DisplayMember and ValueMember are specified.

listBox1.DisplayMember = “CustomerName”;
listBox1.ValueMember = “CustomerID”;
listBox1.DataSource = dtCusts;

And that’s it code-wise. Now you need to get busy and try this yourself.

Try It Out Populate a ListBox using ADO.NET
Before performing the steps of creating the form for this Try It Out, you need to create a switchboard to
call your forms. After this form is created, you then create another form:

1. Right-click the project and choose Add ➪ New Item . . ., and name it as desired.

2. Drag and drop a Label control onto the form.

3. Type Customers for the Text property.

4. Drag and drop a ListBox control onto the form. The form now looks like Figure 13-1.

210

Chapter 13

19_589555 ch13.qxd 12/29/05 8:30 PM Page 210

Figure 13-1

5. Double-click the main form. This opens the editor with the definition of the Form_Load routine
created, shown here.

private void Form1_Load(object sender, EventArgs e)
{

}

6. Under the following line of code:

public partial class frmCreatingDataTables : Form
{

type the following:

private string strConn;

7. Under the lines of code that read as follows:

private void Form1_Load(object sender, EventArgs e)
{

type the following code that was discussed in the section before this Try It Out.

strConn = “Data Source=\”.\\SQLEXPRESS\”;AttachDbFilename=\”C:\\Documents “;
strConn += “and Settings\\Administrator\\My Documents\\Visual Studio “;
strConn += “2005\\Projects\\CoffeeSQL.mdf\”;Integrated Security=True;User “;
strConn += “Instance=True”;

SqlDataAdapter sdaCusts = new SqlDataAdapter(“Select * From tblCustomers”,
strConn);
DataTable dtCusts = new DataTable();

sdaCusts.Fill(dtCusts);

listBox1.DisplayMember = “CustomerName”;
listBox1.ValueMember = “CustomerID”;
listBox1.DataSource = dtCusts;

211

Working with ADO.NET

19_589555 ch13.qxd 12/29/05 8:30 PM Page 211

8. Press F5 to build and test the application. Open the desired form. The list box is now displayed
with the customers listed, as shown in Figure 13-2.

Figure 13-2

The next step is to add a DataGridView control to the form and display the data in the DataGridView
based on the choice made in the ListBox control.

Adding a DataGridView Control
Now that you have the customers listed in the ListView control, it is time to display the invoices for the
selected customer. To do this, you create SqlConnection and SqlCommand objects to retrieve the data.
Using the SqlCommand class, the CommandText property is set to the SQL string, in this case utilizing the
SelectedValue of the ListBox control. Next, the Connection property of the SqlCommand object is set
to the connection object. Then the connection is opened. You can see the code for all this here:

SqlConnection scnn = new SqlConnection(strConn);
SqlCommand scmdInvoice = new SqlCommand();

scmdInvoice.CommandText = “Select * From tblInvoices “;
scmdInvoice.CommandText += “ Where CustomerID = “ +

listBox1.SelectedValue.ToString();
scmdInvoice.Connection = scnn;
scnn.Open();

After these lines of code are executed, the rest is just about the same as the code in the last section,
where the SqlCommand object is passed to the SqlDataAdapter object for the SQL statement. After a
new DataTable is created, the using the SqlDataAdapter Fill method, the data is retrieved. Lastly,
the dtInvoices is set as the DataSource of the DataGridView.

SqlDataAdapter sdaInvoices = new SqlDataAdapter(scmdInvoice);
DataTable dtInvoices = new DataTable();

sdaInvoices.Fill(dtInvoices);

dataGridView1.DataSource = dtInvoices;

212

Chapter 13

19_589555 ch13.qxd 12/29/05 8:30 PM Page 212

You can see the result of running the code in Figure 13-3. Now it’s time for you to get busy.

Figure 13-3

Try It Out Using ADO.NET Classes to Populate a DataGridView Control
Using the form you created in the last Try It Out:

1. Drag and drop a DataGridView control onto the form.

2. Click the DataGridView control to close the task pane.

3. Double-click the ListBox control. This opens the code file for editing and creates a definition
for the ListBox control’s SelectedIndexChanged.

private void listBox1_SelectedIndexChanged(object sender, EventArgs e)
{

}

4. Type the following lines of code between the opening and closing curly brackets:

SqlConnection scnn = new SqlConnection(strConn);
SqlCommand scmdInvoice = new SqlCommand();

scmdInvoice.CommandText = “Select * From tblInvoices “;
scmdInvoice.CommandText += “ Where CustomerID = “ +

listBox1.SelectedValue.ToString();
scmdInvoice.Connection = scnn;
scnn.Open();

SqlDataAdapter sdaInvoices = new SqlDataAdapter(scmdInvoice);
DataTable dtInvoices = new DataTable();

sdaInvoices.Fill(dtInvoices);

dataGridView1.DataSource = dtInvoices;

213

Working with ADO.NET

19_589555 ch13.qxd 12/29/05 8:30 PM Page 213

5. Press F5 to build and run the application.

As you select the various names, you will see the orders change.

Executing Parameterized Stored Procedures
using the SqlCommand Class

Thus far, you have been displaying data on your forms. But when you need to update data in a table
back in the database, you will want to use a stored procedure in a SqlCommand object with parameters.

The Stored Procedure
To start, take a look at the stored procedure, found in the CoffeeSQL.mdf database:

ALTER PROCEDURE dbo.StoredProcedure1
(@intCustID int,
@strEmail varchar(50))

AS
Update tblCustomers Set EmailName = @strEmail from tblCustomers

Where CustomerID = @intCustID
RETURN

The purpose of this stored procedure is to update a person’s e-mail in his or her record. This stored pro-
cedure takes the two parameters, @intCustID and @strEmail, and uses them to specify the CustomerID
to look for and the new EmailName to supply. This stored procedure can be found in the stored proce-
dures of the CoffeeSQL database.

The Form
For this form, you use the ComboBox control to choose a customer who needs his or her e-mail name
updated and then a TextBox control. The code for executing the stored procedure will be created for a
button on the form. You can see the form in Figure 13-4.

Figure 13-4

The Code
The first code that needs to be written is much the same as was used for loading the ListBox control
in the last section. The only thing that changes is that instead of using listBox1 you use comboBox1.
Even the properties remain the same.

The code for actually executing the stored procedure will be different than what you have seen before.
The first code looks familiar in that it instantiates both SqlConnection and SqlCommand objects.

214

Chapter 13

19_589555 ch13.qxd 12/29/05 8:30 PM Page 214

SqlConnection scnn = new SqlConnection(strConn);
SqlCommand scmdUpdate = new SqlCommand();

After these lines of code, the CommandText property is set to the name of the stored procedure, and the
CommandType to CommandType.StoredProcedure.

scmdUpdate.CommandText = “StoredProcedure1”;
scmdUpdate.CommandType = CommandType.StoredProcedure;

Next, parameters are added to the SqlCommand object, one for @intCustID and the other for
@strEmail, using the AddWithValue method of the Parameters collection. The Connection property
of the SqlCommand object is then set to scnn.

scmdUpdate.Parameters.AddWithValue(“@intCustID”,
comboBox1.SelectedValue);

scmdUpdate.Parameters.AddWithValue(“@strEmail”, txtEmail.Text);
scmdUpdate.Connection = scnn;

The SQLConnection is then opened. The ExecuteNonQuery of the SqlCommand object executes the
stored procedure. Lastly, the SqlConnection object is closed.

scnn.Open();
scmdUpdate.ExecuteNonQuery();
scnn.Close();

That is all there is to it.

Try It Out Executing a Stored Procedure with Parameters
Using the project you have been working with throughout the chapter:

1. Add a new Windows form.

2. Add two Label controls, a ComboBox control, a Textbox control, and a Button control, as
shown in Figure 13-4.

3. Double-click anywhere on the form itself. This creates the Form Load routine definition, as
shown here:

private void Form1_Load(object sender, EventArgs e)
{

}

4. Type the following code between the opening and closing curly brackets:

SqlDataAdapter sdaCusts = new
SqlDataAdapter(“Select * From tblCustomers”, strConn);

DataTable dtCusts = new DataTable();

sdaCusts.Fill(dtCusts);

215

Working with ADO.NET

19_589555 ch13.qxd 12/29/05 8:30 PM Page 215

comboBox1.DisplayMember = “CustomerName”;
comboBox1.ValueMember = “CustomerID”;
comboBox1.DataSource = dtCusts;

5. Double-click the Button control you added. The definition for the Click routine is created:

private void btnRunCommand_Click(object sender, EventArgs e)
{

}

6. Type the following code:

SqlConnection scnn = new SqlConnection(strConn);
SqlCommand scmdUpdate = new SqlCommand();

scmdUpdate.CommandText = “StoredProcedure1”;
scmdUpdate.CommandType = CommandType.StoredProcedure;

scmdUpdate.Parameters.AddWithValue(“@intCustID”,
comboBox1.SelectedValue);

scmdUpdate.Parameters.AddWithValue(“@strEmail”, txtEmail.Text);

scmdUpdate.Connection = scnn;

scnn.Open();
scmdUpdate.ExecuteNonQuery();
scnn.Close();

7. Press F5 to build and execute the application.

8. Pick a customer and type an e-mail to update.

9. Click the Button control to execute the stored procedure.

Now when you go and look at the data, you will see that the e-mail name is updated for the client you
specified, as shown in Figure 13-5.

Figure 13-5

You can see this pane in the Database Explorer by right-clicking on the table and choosing Show Table
Data.

216

Chapter 13

19_589555 ch13.qxd 12/29/05 8:30 PM Page 216

Summary
C# Express goes to great trouble to create the necessary data controls and to write the code to have your
application work with those controls. But there are some cases when you will want to write your code
and manage the data yourself. To do so, you need to use ADO.NET and data provider classes. Which
object you will use depends on what you are trying to do.

The DataSet class with the SqlDataAdapter class can be used to retrieve hierarchal data. With com-
mand objects you can update data in the database by using parameterized stored procedures. The con-
nection object is used with most of the other classes to create a connection that can be opened and closed
as necessary.

Exercises
1. Name the three prior types of access methods provided by Microsoft in the past.

2. In ADO.NET the main object for working with data is the DataSet. What was the main object
in the prior version?

3. ADO used connected data methodology. What does ADO.NET use?

4. DataAdapters are used to load data into DataTables and DataSets. What are Command objects
used for?

217

Working with ADO.NET

19_589555 ch13.qxd 12/29/05 8:30 PM Page 217

19_589555 ch13.qxd 12/29/05 8:30 PM Page 218

Part IV

Finishing Touches

20_589555 pt04.qxd 12/29/05 8:25 PM Page 219

20_589555 pt04.qxd 12/29/05 8:25 PM Page 220

14
Getting More Experience

with Controls

In a lot of books when you find out about a couple of the more common controls, it is assumed
that you will just figure out the rest of the controls by yourself. This is probably very true because
you are extremely intelligent. But there are so many very useful controls included in C# Express
for use in your C# applications that I wanted to cover as many as possible for you. In Chapter 9, I
covered the RichTextBox control and a number of the dialog controls. A total of five controls
were covered. This chapter even beats that!

In this chapter there are three tasks that are accomplished: create a file browser using a
SplitContainer control, a WebBrowser control, and more. The last two tasks deal with
various ways of working with date controls, status bars, and progress bars. This chapter includes
about 10 different very useful controls. In it, you will:

❑ Take concepts and command statements you have learned in prior chapters and put them
to practical use.

❑ Use a TabControl to include multiple pages (tasks) on one form.

❑ Utilize various controls such as the SplitContainer, ListBox, FolderBrowserDialog,
and WebBrowser control to create a file browser utility to display files in a Web browser.

❑ Create a demo to display working graphically with dates using the MonthlyCalendar
and DateDrop controls.

❑ Demostrate using ProgressBar controls on a form and in a StatusStrip control at the
bottom of a form.

21_589555 ch14.qxd 12/29/05 8:26 PM Page 221

Walking through the Demo Application
As mentioned in the introduction, this chapter is packed with controls — all displayed using a single form.
There are three demos, each broken out into its own page using a Tab control.

Demo 1: Browsing Web Files
The first page is a utility that enables the user to point to a folder using a FolderBrowserDialog control.
The folder chosen is then displayed in a ListBox control. When the user selects a particular file in the
ListBox control, that file is displayed using a WebBrowser control. An example is shown in Figure 14-1.

Figure 14-1

Another great thing about this demo is that the ListBox and WebBrowser controls are contained within a
SplitContainer control. The SplitContainer control enables users to control the width of the display
of items contained within it — in this case, the list of files and the current file being displayed. There are a
number of different types of files you can display using this demo, including text, html, and graphic files,
but additional work may be required to display files such as Excel worksheets. File types are determined
by current browser plug-ins; images, sounds files, and so on may be accessible via QuickTime, for example.

Demo 2: Choosing and Displaying Dates
The second demo displays a couple of controls that are specifically designed for choosing and display-
ing dates in your applications. Those controls are the MonthCalendar and DateTimePicker controls.
These controls have been around awhile in the programming world as ActiveX controls before .NET. You
can see the demo with a date chosen in the MonthCalendar control in Figure 14-2.

222

Chapter 14

21_589555 ch14.qxd 12/29/05 8:26 PM Page 222

Figure 14-2

The DateTimePicker control reflects the date chosen in the MonthCalendar control. You also can
choose a date in the DateTimePicker control, as shown in Figure 14-3.

Figure 14-3

When you click a DateTimePicker control, another calendar that looks coincidentally like the
MonthCalendar control drops down. You can pick from the calendar displayed.

There have been times in the real world when I have used both the MonthCalendar and DateTimePicker
controls for different purposes and fields on the same page.

223

Getting More Experience with Controls

21_589555 ch14.qxd 12/29/05 8:26 PM Page 223

Demo 3: Working with Progress and Status Bars
The purpose of the last demo is to show how you can use both progress bars and status bars in your
applications. Progress bars are very useful when you have a process that is going to take a while and
you want to let your user know how far there is to go in the process. This works very well when you can
calculate the number of steps it will take to perform the action the system is working on. For example, in
the case of the demonstration, each day of the current month is iterated through. You can see this in
action in Figure 14-4.

Figure 14-4

In fact, in this demo the MonthCalendar control displays each day as the routine whips though them. A
progress bar also is updated in a StatusStrip control, which displays information you want in a status
bar at the bottom of the container control specified, in this case a tab page. You also can have it display at
the bottom of a form instead if desired. You can display information such as today’s date, as seen in
Figure 14-4, progress bars, and other information. Creating status bars and what you can display will be
discussed further later in this chapter in the section titled “Using ProgressBar and StatusStrip Controls.”

It is time to get busy creating the demo. To get started, you need to learn a bit more about the TabStrip
control and how you can use it your applications.

Getting Star ted with the Tab Control
The Tab control is one of those controls that contain other controls. In this case, besides the controls you
place on each of the pages of the Tab control, the Tab control is made up of TabPage controls, unlike prior
versions of the Tab control such as the ActiveX control called the TabStrip control. This prior version
consisted of a strip of tabs, in which you had to change the information displayed yourself by toggling the
visibility of boxes and such.

A feature of the Tab control in C# Express is that you can click the tab you want to add controls to and then
just place the controls on that tab page. If the Tab control you are adding to a form is going to take up the
whole page, then you can set the Dock property to fill the Tab control, and its pages will fill the form. You
have seen the way the Tab control looks at runtime in all the figures shown in this chapter thus far.

224

Chapter 14

21_589555 ch14.qxd 12/29/05 8:26 PM Page 224

Try It Out Create the Main Form and Add a Tab Control
In this Try It Out, you see the control in design view as you create the form you will use throughout the
rest of the chapter, and place a Tab control on it, setting it up for the first demonstration.

1. Open C# Express.

2. Click New Project in the Start Page.

3. Select Windows Application for the template to use, and type in the name of the project you
want to call it. For the purpose of this example, it is called Chapter14. Pretty original, huh?

4. Rename the main form to what you want it to be. For the purpose of this example it is called
frmChapter14Main.cs.

5. Resize the main form to be a little larger using the resize handles.

6. Drag and drop a Tab control onto the form, clicking where you want the top leftmost corner of
the Tab control to be.

7. Click where you want to have the bottom right corner of the Tab control to be.

Note that it really doesn’t matter where you place the Tab control, since you will be setting the Dock
property of the Tab control to be Fill, which will cause the control to fill the entire form.

8. Set the Dock property of the Tab control to Fill, as shown in Figure 14-5.

Figure 14-5

225

Getting More Experience with Controls

21_589555 ch14.qxd 12/29/05 8:26 PM Page 225

If the Properties window doesn’t display the tabControl as the object to work on, click the blank space
beside the tabs on the Tab control. This causes the Tab control to be selected. To select the individual tab
pages, click the tab, then the page of the selected tab. You will work on that next. Remember that the
TabPage controls are contained within the Tab control but have their own properties.

When the Tab control is highlighted, you can select various tasks to perform with the Tab control such as
adding and removing tabs using the right-click menu. Another way to change properties of the TabPage
controls, contained in the Tab Pages collection, is to click the builder button (...) next to the TabPages
property. When you do this, the Tab Pages Collection Editor is opened, as shown in Figure 14-6, with the
second tab page highlighted.

Figure 14-6

Using the arrows beside the list of tab pages, you can rearrange the pages if desired.

Try It Out Modify and Add Tab Pages
For this Try It Out, you will set the Text property for the current two pages that exist for the Tab control
and add a new tab page, setting the Text property for that as well. Using the form you created in the
last Try It Out:

1. Click the tab with the label (Text property) that reads tabPage1.

2. Click the blank area of the Tab control down below the tabs. The Properties window reads
tabPage1.

3. Type Files in Web Browser in the Text property, and then click off the property. You now see
the text in the tab change as shown in Figure 14-7.

226

Chapter 14

21_589555 ch14.qxd 12/29/05 8:26 PM Page 226

Figure 14-7

Remember that you have just changed the Text property of the TabPage control, not the name itself.
Although not used in this chapter, you need to remember this if you are working with the TabPage
controls using code.

4. Click the tab labeled tabPage2; then click the page itself below the tab as you did in Step 2.

5. Type Choosing and Displaying Dates in the Text property and press Enter. The second tab
now displays the text you just typed in.

6. Right-click the Tab control (upper right area next to the tabs).

7. Choose Add Tab from the menu that is displayed. A new tab (tabPage3) is added.

8. Click the blank area in the tab page.

9. Type Progress and Status Bars in the Text property of tabPage3.

Now the Tab control is set up to use for the chapter. When you want to add controls to the pages, you
will click the tab you are interested in, then drag and drop the controls onto the page. When you run the
application, the user can click the tabs and the changing of pages is handled for you.

Now it is time to take a look at the first demonstration, displaying files in a Web browser.

227

Getting More Experience with Controls

21_589555 ch14.qxd 12/29/05 8:26 PM Page 227

Displaying Files in a Web Browser
While it would be easy to throw the WebBrowser control onto a form and hard-code (set using the
design properties) to demonstrate showing a file in the WebBrowser control, it is not near as interesting,
or useful, in my opinion, as creating a form that will let the user specify the folder that contains files,
loads them into a list box, and then loads the WebBrowser control with the specified file.

Controls Used for the Demonstration
To accomplish this, you will use the following controls:

Control How Used

Button Code is written for the Click event that calls the
ShowDialog method of the FolderBrowserDialog. The
folder returned is then passed to the GetFiles method of
the System.UI.Directory class, which returns the names
of files in a string array. The array of filenames is then
loaded into the ListBox control.

FolderBrowserDialog The ShowDialog method is called to display the Folder
Browse dialog box, just the other dialog controls used
in the last chapter. After the user chooses a folder, the
SelectFolder property contains the full path of the folder.
Located in the Dialog category in the Toolbox.

ListBox The AddItem method is used to load filenames into
the ListBox. When selected, the current filename is
retrieved and used by the Navigate method of the
WebBrowser control.

SplitContainer Enables the user to have control over the size of both the
ListBox and WebBrowser controls, much like using
Frames in a Web site. As with the Tab control, this is a
container-type control, consisting of multiple panels. It is
located in the Container category in the Toolbox.

TextBox Displays the current folder being loaded into the ListBox.
Updated in the code behind the Button control.

WebBrowser Using the Navigate method displays the file picked from
the ListBox control in a Web browser on the form. This is
located in the Common Controls category in the Toolbox.

While I normally rename each control to be more meaningful depending on the task, for the purposes of
this chapter, I am leaving some of the controls with their original name as assigned by C# Express when
only one of them is used on the form.

228

Chapter 14

21_589555 ch14.qxd 12/29/05 8:26 PM Page 228

While there is a bit of code used for the controls discussed in the last table, I will walk you through each
line so you will understand them as you write them. Also, I have added code to the code sample to discuss
the blocks of code. To start with, you need to place the controls on the form.

Try It Out Adding the Controls for Displaying Files in a Web Browser
To get going, you will want to have the first page of the Tab control display. Once you do:

1. Drag and drop a Button control onto the first page (tabPage1) of the Tab control, naming it
btnSetFolder.

2. Type Set Folder for the Text property of the Button control added in Step 1.

3. Drag and drop a Label control onto the first page of the Tab control, lining it up beside the
Button control added in Step 1.

4. Type Current Folder for the Text property and lblCurrentFolder for the Name property of the
Label control added in the last step.

5. Set the AutoSize property of the Label control to False. The reason for this property setting is
so that you can resize the label as you want in order to anticipate having text, in this case folder
paths, bigger than the text set at design time.

6. Resize the Label control to stretch across the page.

7. Drag and drop a SplitContainer control onto the first page of the Tab control, placing it
under the Button control.

8. Set the Anchor property of the SlipContainer to Top, Bottom, Right, Left. This will cause the
SlipContainer control to resize itself down the tab page as the form is resized.

9. Resize the SlipContainer using the top middle resize handle so that it starts just below the
Button and Label controls, as shown in Figure 14-8.

10. Set the BorderStyle of the SplitContainer to be FixedSingle. This will add more of an
emphasis on the two panels when viewing.

11. Drag and drop a Label control into the first panel of the SlipContainer added in Step 8, typ-
ing Files to View for the Text property.

12. Drag and drop a ListBox control into the first panel, under the Label control added in the
last step.

13. Set the Anchor property to Top, Bottom, Left, Right. This will cause the control to grow with the
panel it is in.

14. Resize the ListBox control to fill the first panel under the Label control added in Step 10.

15. Drag and drop a WebBrowser control from the Common Control category in the Toolbox in the
second panel of the SlipContainer control. Note that the Dock property of the WebBrowser
control is automatically set to Fill. This will cause the control to fill the second panel of the
SlipContainer.

16. Drag and drop a FolderBrowserDialog control from the Dialogs category of the Toolbox onto
the form. As with other dialog controls you won’t see anything on the form itself, but a compo-
nent will be added to the component tray below the form. You can see the final form without
code in Figure 14-9.

229

Getting More Experience with Controls

21_589555 ch14.qxd 12/29/05 8:26 PM Page 229

Figure 14-8

Figure 14-9

230

Chapter 14

21_589555 ch14.qxd 12/29/05 8:26 PM Page 230

Whew, quite a few controls. And this is just for the first demonstration. Now it is time to work on the
code for actually using the controls.

Adding the Code for Browsing and Displaying Files
The majority of the commands in this chapter have been discussed at one point or another throughout the
book, although there are some new properties and methods of individual controls. I will also review the
use of arrays. While I will be discussing the code used for the method a line at a time, I want to go ahead
and give you the whole method to look at, which is documented with comments fairly well. Again, don’t
stress out looking at it, because you will be working on it by sections, or specific tasks, at a time.

// Declare the array of strings used for filenames
string[] aryFileEntries;

private void btnSetFolder_Click(object sender, EventArgs e)
{

// Display the folder browser dialog
folderBrowserDialog1.ShowDialog();

// Display the folder selected in the top label
this.lblCurrentFolder.Text = folderBrowserDialog1.SelectedPath;

if (this.lblCurrentFolder.Text != “folderBrowserDialog1”)
{

// Clear the current list of files in the listbox
// and Web Browser control.
this.listBox1.Items.Clear();
this.webBrowser1.Navigate(“”);

// Store the filenames into an array
aryFileEntries =

System.IO.Directory.GetFiles(folderBrowserDialog1.SelectedPath);

// Iterate through each of the filenames loaded into the array
foreach (string fileName in aryFileEntries)
{

// strip off the path, and add the filename into the list box
string strFileNameOnly =

fileName.Substring(fileName.LastIndexOf(@”\”) + 1);
this.listBox1.Items.Add(strFileNameOnly);

}
}

}

For the steps in Try It Outs of this chapter, I won’t be including the comments displayed in the code
discussed. Also, remember that the complete code is provided in the sample application for this chapter if
you just want to cut and paste it in. Lazy, but it works easier that way and in fact is the way you will
learn additional methods and use somebody else’s routines.

231

Getting More Experience with Controls

21_589555 ch14.qxd 12/29/05 8:26 PM Page 231

In the code used with the btnSetFolder Click event, the first step is to display the Folder Browser dialog
box and to utilize the folder if one is selected.

Displaying and Utilizing the FolderBrowserDialog Control
To accomplish this, a method and property of the FolderBrowserDialog are used: the ShowDialog
method and the SelectedPath property, as follows:

// Display the folder browser dialog
folderBrowserDialog1.ShowDialog();

// Display the folder selected in the top label
this.lblCurrentFolder.Text = folderBrowserDialog1.SelectedPath;

As explained in the code comments, after displaying the dialog box, the selected path is displayed in the
Text property of the lblCurrentFolder label. This shows users which folder they selected. The next
step is to look at the Text of lblCurrentFolder and see that it does not equal
“folderBrowserDialog1,” which is what it will be if the user selected Cancel in the Folder Browser
dialog box. This is accomplished with the following lines of code:

if (this.lblCurrentFolder.Text != “folderBrowserDialog1”)
{

// Statements in the True block of code.
}

Note that instead of using the lblCurrentFolder.Text value, you could also use the
folderBrowserDialog1.SelectedPath directly.

Try It Out Add the Code to Use the FolderBrowserDialog
As the title implies, you will be adding code to use the FolderBrowserDialog, display the selected
path, and add a test to make sure a path has been chosen. To get started, open the form that you created
on in the prior Try It Outs in the chapter:

1. Double-click the btnSetFolder button. The code file opens, and the btnSetFolder_Click
routine is created for you, as shown in the following:

private void btnSetFolder_Click(object sender, EventArgs e)
{

}

2. Type the following code between the open and close curly brackets of the
btnSetFolder_Click routine:

folderBrowserDialog1.ShowDialog();

this.lblCurrentFolder.Text = folderBrowserDialog1.SelectedPath;

if (this.lblCurrentFolder.Text != “folderBrowserDialog1”)
{

}

232

Chapter 14

21_589555 ch14.qxd 12/29/05 8:26 PM Page 232

Notice that the open and close curly brackets were added for the if code block, even though you aren’t
using it yet. It is a good idea to add these if you know you are going to use a code block even if you test
the code in between updating the code.

3. Press F5 to test the application thus far. The application should open with the first page in the
Tab control displayed.

4. Click the Set Folder button. The Folder Browser dialog box opens, as shown here in
Figure 14-10, where a folder has been chosen.

Figure 14-10

5. Click OK to accept the chosen folder. You now see the path you chose displayed beside the Set
Folder button.

6. Close the sample form and return to the C# Express editor.

Clearing the ListBox and WebBrowser Controls
Continuing with the flow of the overall demo code, if the value in the Text property of
lblCurrentFolder is a legitimate folder, the next piece of code is executed. The code clears both
the Items collection of the ListBox collection, as well as clears the WebBrowser control by
passing the Navigate parameter to the empty string (“”). You can see the code here:

// Clear the current list of files in the listbox
// and Web Browser control.
this.listBox1.Items.Clear();
this.webBrowser1.Navigate(“”);

The purpose of this code is to make the demo usable more than one time when opened. If you didn’t
include the preceding code, when new items are added, as shown in the next section, they would simply be
added onto the current items already in the ListBox. Likewise, if you didn’t add the code for navigating to
nothing in the last line of code, then the WebBrowser control would reflect the file that was last displayed,
regardless of the current list of files.

233

Getting More Experience with Controls

21_589555 ch14.qxd 12/29/05 8:26 PM Page 233

You will be loading up the Items collection of the ListBox in the next section, and specifying where to
navigate in the Web Control in the section titled “Navigating in the Web Browser Control.”

Try It Out Clearing the ListBox Items Collection and WebBrowser
Make sure C# Express is opened in the editor into the btnSetFolder_Click routine:

1. Place the cursor in the code block of the if statement you added in the last Try It Out as
shown here:

if (this.lblCurrentFolder.Text != “folderBrowserDialog1”)
{

}

2. Type the following lines of code:

this.listBox1.Items.Clear();
this.webBrowser1.Navigate(“”);

Since this code doesn’t really show much until the next section is added, there is no need to run the
application again until after the next Try It Out.

Getting the List of Files and Loading the ListBox
The next line of code takes the selected path and passes it to the GetFiles method of the
System.IO.Directory class. The System.IO.Directory class provides properties and methods for
accessing and working with folders and their content. The GetFiles method goes out to the folder
passed to it and returns the list of filenames as an array of strings, shown here:

// Store the filenames into an array
aryFileEntries = System.IO.Directory.GetFiles(folderBrowserDialog1.SelectedPath);

When using this in the real world, you may want to use exception handlers here. For more information
on exception handling, reread Chapter 7.

In this case, the array is declared just before the btnSetFolder_Click routine at the class level so that
the array is available to all the routines in the class. The following line of code is used to declare the
array:

string[] aryFileEntries;

This line of code is place outside of the Click event handler, just above in the sample code. By specify-
ing string[], you are telling C# that the variable named is going to be an array of strings. This means
that there will be more than one entry in the variable. You can get to the entries using an index starting
at 0. So if the list of filenames was FileA, FileB, and FileC, the array will look like this:

aryFileEntries[0] = “FileA”

aryFileEntries[1] = “FileB”

aryFileEntries[2] = “FileC”

234

Chapter 14

21_589555 ch14.qxd 12/29/05 8:26 PM Page 234

You can load items into an array individually. However, there are some methods and statements that
enable you to load the elements into the array, and others that iterate through the array to access all the
elements. The code in this demonstration has examples of both. For instance, as mentioned, the
GetFiles method loads the list of filenames into the aryFileEntries array for you by passing it as the
return value.

Once the filenames have been loaded into the array, you can then go through the array and load them
into the ListBox control using the foreach statement to iterate through the array. The lines of code to
iterate through the array looks like the following:

// Iterate through each of the filenames loaded into the array
foreach (string fileName in aryFileEntries)
{

// Statements performed for each array element that is loaded into fileName.
}

with the statements performed in the block of code discussed in a moment. This foreach statement
iterates through the array called aryFileEntries, and creates a variable used within the code block
called fileName. This variable is only seen within the code block, and as with variables stored in the
for statements, can be declared for each iteration in the loop. For statements were first discussed in
Chapter 7.

The last thing to discuss before actually walking you through the Try It Out is how to take the filenames
and load them into the ListBox control. Before loading the name into the ListBox Items collection,
you need to strip the path of the filename off of it. To accomplish this, you will two methods of the string
type Substring and LastIndexOf, both of which were discussed in Chapter 5.

// strip off the path, and add the filename into the list box
string strFileNameOnly = fileName.Substring(fileName.LastIndexOf(@”\”) + 1);

The previous line of code creates a new variable and takes the filename of the path and filename by
locating the position of the last “\” character in the current array element that was stored in the
fileName variable. Remember that by not supplying the length of the substring to return, which is the
second parameter, the Substring method returns the rest of the string beginning at the starting location,
in this case provided by the LastIndexOf method.

The @ is necessary when you want to use the literal “\” value. Otherwise, the “\” is considered to be
the newline character.

Finally, you will use the Add method of the ListBox Items collection to add the current filename, now
stored in strFileNameOnly.

this.listBox1.Items.Add(strFileNameOnly);

Remember that the last couple of lines of code are located inside the code block for the foreach statement.
Once each of the elements has been added, the ListBox control will then show the filenames.

235

Getting More Experience with Controls

21_589555 ch14.qxd 12/29/05 8:26 PM Page 235

Try It Out Load the ListBox Control
Now is your chance to add the code specified here and load the ListBox control for yourself. Open the
form that you created on in the prior Try It Outs in the chapter:

1. Placing the cursor above the line of code that reads

private void btnSetFolder_Click(object sender, EventArgs e)

type the following line of code to declare the array:

string[] aryFileEntries;

2. Place the cursor in the if statement after the lines of code that read:

if (this.lblCurrentFolder.Text != “folderBrowserDialog1”)
{

this.listBox1.Items.Clear();
this.webBrowser1.Navigate(“”);

Then press Enter. This creates a blank line.

3. Type the following lines of code:

aryFileEntries =
System.IO.Directory.GetFiles(folderBrowserDialog1.SelectedPath);

foreach (string fileName in aryFileEntries)
{

string strFileNameOnly =
fileName.Substring(fileName.LastIndexOf(@”\”) + 1);

this.listBox1.Items.Add(strFileNameOnly);
}

The final lines of code should look like this:

// Declare the array of strings used for filenames
string[] aryFileEntries;

private void btnSetFolder_Click(object sender, EventArgs e)
{

// Display the folder browser dialog
folderBrowserDialog1.ShowDialog();

// Display the folder selected in the top label
this.lblCurrentFolder.Text = folderBrowserDialog1.SelectedPath;

if (this.lblCurrentFolder.Text != “folderBrowserDialog1”)
{

// Clear the current list of files in the listbox
// and Web Browser control.
this.listBox1.Items.Clear();
this.webBrowser1.Navigate(“”);

// Store the filenames into an array

236

Chapter 14

21_589555 ch14.qxd 12/29/05 8:26 PM Page 236

aryFileEntries =
System.IO.Directory.GetFiles(folderBrowserDialog1.SelectedPath);

// Iterate through each of the filenames loaded into the array
foreach (string fileName in aryFileEntries)
{

// strip off the path, and add the filename into the list box
string strFileNameOnly =

fileName.Substring(fileName.LastIndexOf(@”\”) + 1);
this.listBox1.Items.Add(strFileNameOnly);

}
}

}

Comments have been added to this display so that you can add them yourself at this point if you want.

4. Press F5 to run the application.

5. Click the Set Folder button to choose a folder. The Folder Browser dialog box opens.

6. Pick a folder and click OK. The list of files in the folder is displayed in the ListBox control as
shown in Figure 14-11.

Figure 14-11

The speed in which the files are displayed in the ListBox will depend on the number of files in the
folder you are pointing to.

Okay, down the home stretch for this demo. The last thing to discuss is displaying a file in the Web
browser.

237

Getting More Experience with Controls

21_589555 ch14.qxd 12/29/05 8:26 PM Page 237

Navigating in the Web Browser Control
Actually navigating in the WebBrowser control is as simple as calling a single method called Navigate,
which, as discussed earlier in the chapter in the section called “Clearing the ListBox and WebBrowser
Controls,” was executed with the empty string (“”) to clear the browser. In the case of using it for dis-
playing a file, you will pass the literal “file://” with the full path of the file.

To retrieve the full path of the file you want to display, you take SelectIndex property of the ListBox
control and use it as an index for aryFileEntries. You can see how this portion of the command
would look here:

aryFileEntries[listBox1.SelectedIndex]

Taking the literal discussed in the first paragraph (“file://”) and adding that to the command just dis-
played, you will pass the two to the Navigate method as such:

this.webBrowser1.Navigate(“file://” + aryFileEntries[listBox1.SelectedIndex]);

This line of code will be executed using the SelectedIndexChange event of the ListBox. So the com-
plete routine, with comments, will look something like the following:

private void listBox1_SelectedIndexChanged(object sender, EventArgs e)
{

// Use the WebBrowser control to displayed the selected file
this.webBrowser1.Navigate(“file://” +

aryFileEntries[listBox1.SelectedIndex]);
}

Try It Out Add the Code to Display the File in the WebBrowser Control
Using the form you created for this chapter:

1. Double-click the ListBox control. This causes C# Express to open the code file for the form and
create the header for the SelectedIndexChanged routine:

private void listBox1_SelectedIndexChanged(object sender, EventArgs e)
{
}

2. Type the following line of code in between the curly brackets:

this.webBrowser1.Navigate(“file://” +
aryFileEntries[listBox1.SelectedIndex]);

3. Press F5 to run the application.

4. Click the Set Folder button to choose a folder. The Folder Browser dialog box opens.

5. Pick a folder and click OK. The list of files in the folder is displayed in the ListBox control.

238

Chapter 14

21_589555 ch14.qxd 12/29/05 8:26 PM Page 238

6. Click one of the files in the ListBox control. The file should then be displayed in the browser if
it is of the right type as mentioned in the section titled “Demo 1: Browsing Web Files,” found in
the beginning of the chapter. Figure 14-12 shows what the form will look like after picking a file.

Figure 14-12

There you have it, a very useful utility with not much code written. There are definitely ways to improve
upon this design. One way would be to record the index in aryFileEntries in the list items. That way
you’d be able to sort files in different ways without relying on list item indices to locate the full path to
the files. I will leave this to you to work on, before moving on to the next section.

Working with Date Controls
The second tab on the chapter form, Choosing and Displaying Dates, is a lot easier to create than the first
tab’s topic. Although in my opinion, even though using date controls is much simpler to understand
and implement, I honestly think you will use them more often than displaying files in a Web browser
in your form.

A lot of your applications will utilize dates, such as order dates for invoices or schedule dates for employee
schedules. While you can input a date into a TextBox control and control how it is inputted, it is much
more professional to give the user a graphic representation for the date. You can see an example of the
controls in Figure 14-13.

239

Getting More Experience with Controls

21_589555 ch14.qxd 12/29/05 8:26 PM Page 239

Figure 14-13

Before adding the two controls used for this demonstration, the MonthCalendar and DateTimePicker
controls, yourself, I want to discuss a little further how you can use each of them.

Looking at the MonthCalendar Control
With the MonthCalendar control, displayed on the left in Figure 14-13, users can click a date and change
the current date selected. You can move back and forth using arrows at the top of the control to change
the month. The control displayed in Figure 14-13 has been placed on the form using the default proper-
ties. Using the properties provided you can set everything from the title color to whether or not to dis-
play today’s date.

The main property you will be using in the code is the SelectionStart property. Instead of just
providing a single date that you can pick from the calendar, the MonthCalendar control provides the
ability to select a range of dates. The other property you would use for that would be the SelectionEnd
property. This is useful if you want to use the calendar for specifying To/From dates on a report.
However, for this example, you will be using only the SelectionStart property. You also will set the
MaxSelectionCount property to 1, because this example is only interested in one day. You can see some
the properties mentioned here and more of the possible properties to use in Figure 14-14.

As with other controls, the MonthCalendar control has a number of methods (which you won’t be
using) and events to use at your disposal. In this example, you will be using the DatePicked event to
execute a line of code that updates the value in the DateTimePicker control.

240

Chapter 14

21_589555 ch14.qxd 12/29/05 8:26 PM Page 240

Figure 14-14

Looking at the DateTimePicker Control
The DateTimePicker control enables the user to enter or choose dates a few different ways depending
on how properties are set:

❑ Text box. Using this method of input, users enter the date they are interested in as they would
in a TextBox control. The data is then evaluated to make sure it matches the correct format.

❑ Drop-down calendar. When the drop-down arrow is clicked, a MonthCalendar control is
displayed and the user can pick from the displayed dates on the calendar.

❑ Date up/down. Similar to the numeric up/down control, up and down arrows are displayed in
place of the drop-down arrow. Users can then click up and down to move through dates.

Entering as a text box is included in both of the two other choices. To get the up and down arrows, you set
a property called ShowUpDown. The two arrows then replace the single drop-down arrow. The drop-down
calendar choice is the default use of the DateTimePicker control and the one used for this example.

The default event that used for executing code for the DateTimePicker control is the ValueChanged
event. To get or set the DateTimePicker date in code, you use the Value property.

It’s time to get going creating this example.

Try It Out Create the Date Controls Example
Since there are only two lines of functional code, you will have to write to create this example, you will
add both controls and the code used to update each based on the other’s value all at once in this Try It
Out. So with the form used for this chapter, in the design view:

1. Click the tab in the TabControl that has the text: Choosing and Displaying Dates.

241

Getting More Experience with Controls

21_589555 ch14.qxd 12/29/05 8:26 PM Page 241

2. Drag and drop a MonthCalendar control onto the form from the Common Controls category in
the Toolbox.

3. Set the MaxSelectionCount of the MonthCalendar control you added to 1, using the proper-
ties window. You can see the control added and the MaxSelection property in Figure 14-15.

Figure 14-15

4. Drag and drop a DateTimePicker control from the Common Controls category in the Toolbox,
dropping it beside the MonthCalendar control you added.

5. Double-click the MonthCalendar control you added in Step 2. The code for the routine of the
DateChanged is displayed as follows:

private void monthCalendar1_DateChanged(object sender, DateRangeEventArgs e)
{

}

The cursor is placed in the blank line.

6. Type the following code:

// Set the DateTimePicker value to the month calendar date.
this.dateTimePicker1.Value = this.monthCalendar1.SelectionStart;

This now causes the DateTimePicker control Value property to be updated when a new date is
chosen in the MonthCalendar control. The next steps will show how to add code to accomplish
the opposite, having the SelectionStart control updated when the DateTimePicker value is
updated.

242

Chapter 14

21_589555 ch14.qxd 12/29/05 8:26 PM Page 242

7. Switch back to the form design file of the example form.

8. Double-click the DateTimePicker control to create the code for the ValueChanged event, as
shown:

private void dateTimePicker1_ValueChanged(object sender, EventArgs e)
{

}

9. Type the following code in the blank line provided:

// Set the first date of the month calendar control
this.monthCalendar1.SelectionStart = dateTimePicker1.Value;

10. Press F5 to build and execute the application.

11. Click the Choosing and Displaying Dates tab.

12. Play with the two date controls and see the response to the other by choosing a date from the
MonthCalendar control and then from the DateTimePicker control.

This fairly straightforward demonstration has showed you how you can not only display dates in different
types of date controls but also change them and have them affect other controls. In the next and final
demonstration, you will be using a MonthCalendar control to set the max values on a couple of different
ProgressBar controls.

Using ProgressBar and StatusStrip Controls
ProgressBar and StatusStrip are useful controls that don’t always get covered in books. Because
these controls are so easy to use, authors think you can just figure them out yourself. While this may be
true, unless you have someone show you their differences, you may not see that they are both useful.

Before I go into more detail on each of these controls, take a look at the demonstration created for the
purpose of introducing the ProgressBar and StatusStrip controls.

Describing the Progress and Status Bars Demo
To show you how you can use both of these controls, a demo has been created that places a
MonthCalendar control on a form with ProgressBar and StatusStrip controls. In the StatusStrip
control are two other controls: StatusLabel control, which displays today’s date, and another
ProgressBar control. These are discussed in the section titled “Using the StatusStrip Controls,” later in
the chapter. The last control on the form is a Button control that executes the code to iterate and update
the progress bar.

The purpose of the MonthCalendar control is to provide the maximum values for the progress bars. For
example, if you are in February and you click the Button control, the progress bars’ Maximum will be set
to the number of days in February, 28 (unless it is a leap year, of course), and a for loop is executed for
the Maximum value of the first ProgressBar control.

243

Getting More Experience with Controls

21_589555 ch14.qxd 12/29/05 8:26 PM Page 243

For fun, the days in the MonthCalendar control are updated as the days are incremented. Lastly, a
message box is displayed saying that the process is complete, and then the progress bars values are set to
0 and the MonthCalendar control’s SelectedStart property is set to 1. You can see an example of the
demonstration after completing the loop, where it displays the message box shown in Figure 14-16.

Figure 14-16

To get started on building the demo itself, I want to discuss using ProgressBar controls.

Working with ProgressBar Controls
As mentioned, using a ProgressBar control is pretty easy, taking primarily three basic steps:

1. Drag and drop it on the form.

2. Set the Maximum property for the ProgressBar control, either in the design view in the properties
window or using code.

3. Inside the iterative process (loop) that you are executing, increment the Value property of the
ProgressBar control you are using.

That’s it. You can modify the ProgressBar control’s properties if you want to use different features
such as changing the Style property of the ProgressBar. The choices are Blocks (default), Continuous,
and Marquee. For the purpose of this example, the default style was used.

As with the first demonstration with the File Browser utility, I will break this demonstration up into
a few Try It Outs to make it easier to follow. To start with, you will be adding the Button and
MonthCalendar controls onto the form along with the first ProgressBar control. The next Try It Out
and section goes through the code you will use for using the progress bar. Finally, the last Try It Out has
you add the StatusStrip control and the controls included on it, as well as discuss the code used for
setting the controls values at runtime.

244

Chapter 14

21_589555 ch14.qxd 12/29/05 8:26 PM Page 244

Try It Out Add the Controls for Using the First Progress Bar
Use the form created for the demonstrations in this chapter, in the design view of the form itself. For
positioning of the controls you can use Figure 14-16 as an example:

1. Click the Progress and Status Bars tab.

2. Drag and drop a Button control from the Common Controls category in the Toolbox, sizing it to
your desired width and height.

3. Set the Name property to btnProcessMonth and the Text property to Process Month.

4. Drag and drop a ProgressBar control onto the form from the Common Controls category in
the Toolbox, again sizing it as desired.

5. Drag and drop a MonthCalendar control onto the form, again from the Common Controls
category in the Toolbox.

6. Set the MaxSelectionCount of the MonthCalendar control you added to 1, using the properties
window.

Okay, before adding the controls for the status bar, I want to have you add the code that sets up and iterates
through the days of the current month.

Adding the Code to Setup and Update the ProgressBar
Control

The first thing you need to do is set the ProgressBar up to reflect the current month. To accomplish
this, you will create a routine called UpdateCal2Day that will take the day passed, which is of the int
type, and assign that value to the Value property of the progress bar. Here is what that line of code will
look like:

this.progressBar1.Value = intDay;

The complete code for using the main progress bar and MonthCalendar controls is as follows:

private void UpdateCal2Day(int intDay)
{

// Update the two progress bars with the current value (day)
this.progressBar1.Value = intDay;

// If the current day is 0 (reset) set the calendar control to day 1,
// otherwise set it to the day specified.
if (intDay == 0)
{

this.monthCalendar2.SelectionStart =
new System.DateTime(monthCalendar2.SelectionStart.Year,

monthCalendar2.SelectionStart.Month, 1);
}
else

245

Getting More Experience with Controls

21_589555 ch14.qxd 12/29/05 8:26 PM Page 245

{
this.monthCalendar2.SelectionStart =

new System.DateTime(monthCalendar2.SelectionStart.Year,
monthCalendar2.SelectionStart.Month, intDay);

}

}

After assigning the passed day into the Value property of the ProgressBar control, the code sets the
Calendar control on this page to the current day of the month based on the value passed into the rou-
tine. You will see that an if statement is used to check to see if the intDay is 0, reset the ProgressBar,
and cause code to be run that sets the date to the first day of the month. This is accomplished with the
following line of code:

this.monthCalendar2.SelectionStart =
new System.DateTime(monthCalendar2.SelectionStart.Year,

monthCalendar2.SelectionStart.Month, 1);

Notice that the Year and Month properties of the SelectionStart property is combined with the 1
constant and is converted into a DateTime type using the System.DateTime class. If intDay wasn’t 0,
the same basic line of code is used, with intDay taking the place of 1.

this.monthCalendar2.SelectionStart =
new System.DateTime(monthCalendar2.SelectionStart.Year,

monthCalendar2.SelectionStart.Month, intDay);

Now this routine is first called when the form is loaded so that the MonthCalendar control is set to the
first day of the month. You can see how the routine is called from the Load routine of the form.

private void frmChapter14Main_Load(object sender, EventArgs e)
{

// Initialize the progress bar set of controls
// for the second calendar.
UpdateCal2Day(0);

}

Before getting into actually creating the code that processes all the month’s days, I want you to go ahead
and add the code for the routine that updates the progress bar and calendar. When the form is opened
and the tab page clicked, you will see the box shown in Figure 14-17.

246

Chapter 14

21_589555 ch14.qxd 12/29/05 8:26 PM Page 246

Figure 14-17

Try It Out Add the Code to Set Up Controls
Using the form you created for this chapter:

1. Double-click the title bar of the form. This creates a Load routine for the form as shown here:

private void frmChapter14Main_Load(object sender, EventArgs e)
{

}

2. Type the following line of code in the blank line:

UpdateCal2Day(0);

If you were to try and build the application at this point, you would get an error, so don’t.

3. Position the cursor just after the closing curly bracket, and press Enter to add a blank line.

4. Type the following code provided here without comments:

private void UpdateCal2Day(int intDay)
{

this.progressBar1.Value = intDay;

if (intDay == 0)
{

this.monthCalendar2.SelectionStart =
new System.DateTime(monthCalendar2.SelectionStart.Year,

monthCalendar2.SelectionStart.Month, 1);
}
else

247

Getting More Experience with Controls

21_589555 ch14.qxd 12/29/05 8:26 PM Page 247

{
this.monthCalendar2.SelectionStart =

new System.DateTime(monthCalendar2.SelectionStart.Year,
monthCalendar2.SelectionStart.Month, intDay);

}

}

5. Press F5 to test the application. When you click the Progress and Status Bars tab, the calendar
appears with the first day of the month highlighted.

You have created code to update the progress bar and calendar based on the value passed to it. Now it is
time to add code to the button on the form that runs though the days of the current month chosen.

Adding the Code to Run through the Days of the Month
Chosen

Before you actually run through the days of the current month used in the calendar, the Maximum prop-
erty of the ProgressBar control needs to be set. To accomplish this, the following line of code is used:

this.progressBar1.Maximum =
System.DateTime.DaysInMonth(monthCalendar2.SelectionStart.Year,
monthCalendar2.SelectionStart.Month);

This code uses the System.DateTime class again by calling the DaysInMonth method, which takes the
year and month passed to it and returns the days in the month.

Remember that the System.DateTime class has a number of different methods and properties that
deal with date and time information. It is worth your time to experiment with this class and look it up
in the Object Browser.

After establishing the maximum value for the ProgressBar control, the code increment the values in
the progress bar, causing the progress bar to fill up with blocks. To accomplish this, a for loop is used,
with 1 as the minimum value and the Maximum property of the ProgressBar control as the maximum
value of the loop. You can see the complete loop here, with the necessary code specified inside:

// Iterate through each tick in the progress bar,
// Which was set based on the # of days in the current month.
for (int i = 1; i <= this.progressBar1.Maximum; i++)
{

// Update the calendar control date to display the current date.
UpdateCal2Day(i);

// The following for loop is to slow down the progress bar.
for (int j = 1; j <= 5000000; j++) ;

}

In addition to calling the UpdateCal2Day routine, you will see an additional loop specified. Note that
this loop is used to slow down the filling of the progress bar for demonstration purposes. You won’t need
this when you use it for a real-life situation.

248

Chapter 14

21_589555 ch14.qxd 12/29/05 8:26 PM Page 248

The last thing this routine needs to do is let the user know when the task has been completed, in this
case when the days have been looped through.

MessageBox.Show(“The Month has been processed!”, “Month Processed”);
// Reset the values.
UpdateCal2Day(0);

Try It Out Add Code to Process Each of the Days
Making sure that the form you created in this chapter is opened in design view with the third tab page
displayed:

1. Double-click the Button control called btnProcessMonth. The code file for the form opens,
with the Click routine done for btnProcessMonth.

private void btnProcessMonth_Click(object sender, EventArgs e)
{

)

2. Type the following code:

this.progressBar1.Maximum =
DateTime.DaysInMonth(monthCalendar2.SelectionStart.Year,
monthCalendar2.SelectionStart.Month);

for (int i = 1; i <= this.progressBar1.Maximum; i++)
{

UpdateCal2Day(i);
for (int j = 1; j <= 5000000; j++) ;

}

MessageBox.Show(“The Month has been processed!”, “Month Processed”);
UpdateCal2Day(0);

3. Press F5 to test the application.

4. Click the Progress and Status Bar tab.

5. Click the Process Month button. You now see the progress bar fill up and the days whip through
in the calendar. After completing, the message box appears.

6. Click OK. The progress bar is cleared and the date is positioned on the first day of the month.

Now that you have gotten the progress bar working on the form, it is time to look into using the
StatusStrip control.

Using the StatusStrip Control
While progress bars are primarily used for displaying the progress of a specific task, such as performing
end-of-month processing, status bars are displayed on a form or at the bottom of an application to display
the overall information about the current status of the application you are in. You have seen progress bars

249

Getting More Experience with Controls

21_589555 ch14.qxd 12/29/05 8:26 PM Page 249

when you download a file from the Internet or copied a file on your local system. For an example, look at
the status bar located at the bottom of the C# Express editor when in a code file, shown in Figure 14-18.

Figure 14-18

This status bar displays actions that are occurring, such as building the application. In C# Express, you
will use the StatusStrip control to display a status bar.

StatusStrip controls are made up of panels. When you add a StatusStrip control, a drop-down is
displayed that lets you choose from four different types of controls you can display: StatusLabel,
ProgressBar, DropDownButton, and SplitButton. For the purpose of this example, you will be using
the first two types of controls. The actual types are ToolStripStatusLabel and
ToolStripProgressBar.

Once you have specified the controls to use on the StatusStrip control, you can utilize them at run-
time as you would any other control. For example, now that you have a label on the status bar, you can
update it when the form loads to display today’s date just as you would a regular label:

this.toolStripStatusLabel1.Text = DateTime.Today.ToLongDateString();

The same goes for the progress bar used in the StatusStrip control. The following lines of code, used
in two different routines, set the Maxium and Value properties of the ToolStripProgressBar control:

this.toolStripProgressBar1.Maximum = this.progressBar1.Maximum;

this.toolStripProgressBar1.Value = intDay;

You will be guided as to where the lines of code will go.

Try It Out Add the StatusStrip Control and Code
Using the same tab you used in the last Try It Out:

1. Drag and drop a StatusStrip control on to the form from the Menus & Toolbars category in
the Toolbox.

2. A status bar appear across the bottom of the form with a drop-down arrow is displayed.

3. Click the drop down arrow and select StatusLabel from the list. The label appears in the first
spot in the status bar, and the drop-down arrow appears to the right.

4. Click the drop-down arrow; the screen should appear as it does in Figure 14-19.

5. Click the ProgressBar item in the list. The progress bar appears in the status bar. At this point
if you test the application, you would just see the current text in the status bar label displayed in
the status bar. You need to now add the code. The three lines of code shown in the section are all
you need.

250

Chapter 14

21_589555 ch14.qxd 12/29/05 8:26 PM Page 250

Figure 14-19

6. Double-click the top of the form to open the code with the Load routine opened. You can see the
current code here:

private void frmChapter14Main_Load(object sender, EventArgs e)
{

// Initialize the second set of controls for the second calendar.
UpdateCal2Day(0);

}

7. Place the cursor after the opening curly bracket and press Enter to add new line.

8. Type in the following lines of code in the new blank line:

// Display the current date in the label ini the status bar.
this.toolStripStatusLabel1.Text = DateTime.Today.ToLongDateString();

9. Switch back to the form, and double-click the btnProcessMonth button. The form opens with
the current code displayed. Here are the first few lines of code from that routine:

private void btnProcessMonth_Click(object sender, EventArgs e)
{

this.progressBar1.Maximum =
DateTime.DaysInMonth(monthCalendar2.SelectionStart.Year,
monthCalendar2.SelectionStart.Month);

10. Type the following code in the line after the last line of code just displayed:

this.toolStripProgressBar1.Maximum = this.progressBar1.Maximum;

251

Getting More Experience with Controls

21_589555 ch14.qxd 12/29/05 8:26 PM Page 251

11. Now locate the UpdateCal2Day routine, which starts off with the following code:

private void UpdateCal2Day(int intDay)
{

// Update the two progress bars with the current value (day)
this.progressBar1.Value = intDay;

12. Add the following line of code to update the Value property of the progress bar in the status bar.

this.toolStripProgressBar1.Value = intDay;

13. Press F5 to execute the application.

14. Click the third tab. Today’s date appears in the status bar.

15. Click the Process Month button. The routine should run through the process, updating both
progress bars on the screen as shown in Figure 14-20.

Figure 14-20

And there you go. You now have progress bars and status bars working on your form.

Summary
There are so many excellent controls that come with C# Express for your use, whether you are trying to
browse folders, load the files in the folder into a list box, or even click one of the files and have it display
in a WebBrowser control. It is all very doable, as you can see in this chapter. Once you have become
accustomed to adding controls, modifying them to meet your needs more concisely is a lot easier.

An example of how you could combine the examples give here is to display a progress bar when you
are loading the files into the Items collection of the list box. That way, the form wouldn’t just sit there
when you had to load folders with a higher number of files. As you create your forms, you can use one
of the many controls you have access to, and then using the object browser, study the various methods,
properties, and events available. So it’s time to get to work!

252

Chapter 14

21_589555 ch14.qxd 12/29/05 8:26 PM Page 252

Exercises
1. What are the two properties for setting the range on a MonthCalendar control?

2. What is the control for displaying two different objects in it and letting them be resized separately?

3. Name the four types of controls that can be used in the StatusStrip control.

4. Which method on the System.DateTime class returns the number of days in a month, and
what are the parameters it requires?

253

Getting More Experience with Controls

21_589555 ch14.qxd 12/29/05 8:26 PM Page 253

21_589555 ch14.qxd 12/29/05 8:26 PM Page 254

15
Using Web Services from

Your C# Application

Over the years, one of the big dilemmas facing software developers and big corporations is how to
make data available to those who are both on the inside and outside without giving up security
and make it efficient. When information was supposed to be shared, you had to create tapes and
disks, mail them, and then import the data. Another issue for software developers is giving their
users powerful features without having to spend hundreds of hours trying to give the users want
they want. Web Services, also called XML Web Services, gives developers these abilities and
much more.

Besides, exposing data developers can also provide and perform actions at a distance by creating a
Web service that people from other locations can take advantage of. An example is a Web service
hooked up to a Web cam at the Seattle Mariners baseball stadium (called Safeco Field) that allows
me to watch the ballgame from my computer in my office.

One of the really great features of Web Services is that you can create them with .NET and C# if
you have the full version of Visual Studio .NET.

Web services provide solutions to tasks either that don’t make sense for you to create or even main-
tain the code for, or for which you would have to have access to outside data available from another
company or facility. A couple of examples of utilizing Web services are getting stock quotes from a
stock service or weather information for anywhere in the world. These examples are used in this
chapter to discuss what Web services are and how you can utilize them in your applications.

In discussing the topics just mentioned in this chapter:

❑ Gives an overview of Web services and how you can use them in C# Express.

❑ Discusses what Web services are available and how to locate them.

❑ Shows how to create references in your application to desired Web services.

❑ Shows how to use Web services in your own applications, with examples of adding stock
quotes and weather information Web services.

22_589555 ch15.qxd 12/29/05 8:33 PM Page 255

Overview of Web Services
Sometimes when I discuss implementing Web services in applications my students get a quick look of
panic on their faces. This shouldn’t be the case, because Web services are actually no more difficult to use
than any of the other .NET classes located in the Framework. The only difference is you need to locate
the service and set a reference to it in the applications (more on that in a minute). Right now take a look
at one of the examples discussed in the introduction.

Looking Further at a Web Service Example
Before getting into how Web services work, I want to show you one of the examples discussed in the
introduction of the chapter. With literally typing only five lines of code, I was able to type in a stock
symbol, such as MSFT, and retrieve the screen shown in Figure 15-1 from a stock quote Web service.

Figure 15-1

It took me all of 15 minutes to locate a Web service to perform this task and create the form to call the
service and display the information. I then said to myself, “Well this is cool, but what if I want to get
more than one quote at a time?” With this in mind I typed MSFT, FOX and then clicked the Get Stock
button. Wouldn’t you know I got the screen shown in Figure 15-2 without any additional programming?

Now, while not all Web services are as easy to use, I have found most of them not too hard to figure out.
You will be creating this form and seeing how to access the Web service later in this chapter. For now,
you need to create the starting project.

256

Chapter 15

22_589555 ch15.qxd 12/29/05 8:33 PM Page 256

Figure 15-2

Try It Out Create the Project and Main Form for the Chapter
By now this is pretty old hat. For this chapter, once again you will create a project that has a main form
with buttons to open the various forms used for the examples in the chapter.

1. Open up C# Express and while in the Start Page, choose New Project.

2. Choose Windows Application for the template to use, and name the project as desired. For this
chapter the project is called Chapter 15.

3. Click OK to create the project and the default form.

4. Using the skills you have learned throughout the book, add two buttons that will be used to call
the two sample forms used for this chapter.

You are now ready to read further about how to use Web services. To get started, I will talk further about
how Web services are used and what they are.

What Are Web Services?
Even with Windows XP and later operating systems, Web services are utilized without you even know-
ing about it. Features such as Windows Update and other Internet services use Web services. A lot of
companies also now use Web services to expose their databases to outside developers when necessary.
For instance, when a financial services company needs to allow certain information be accessible by their
clients, they will create a Web service, with security in place that provides the information needed.

When using a Web service, the application on the local machine, also called the consumer, under the cov-
ers is using Internet protocols such as HTTP and SOAP (Simple Object Access Protocol) to communicate
with the Web service located on a Web server. This communication will transpire either locally, on an
intranet, or on the Internet. When the Web service is communicating back to the consumer, HTTP and
SOAP are also used. The information itself is passed back and forth as XML.

257

Using Web Services from Your C# Application

22_589555 ch15.qxd 12/29/05 8:33 PM Page 257

Before you panic thinking you have to learn all of these technologies, one thing you should know is the
majority of the work for all the communications between your computer and the Web services is handled
by .NET when you use C#. All you will have to do is set a reference to the Web service you are using.
You can then make use of .NET types defined in the Web service via their WSDL description, or by a
shared class library reference The first part of this chapter is mainly to give you an idea of what Web
services are all about and what happens under the covers.

One of the great things about using Web services is that as long as the consumer can create and
consume messages defined for the Web service, it doesn’t matter what the consumer is written in or even
what platform the Web service is run on. The term used for this is “loosely coupled” or, in other words,
nonproprietary. Figure 15-3 displays this concept.

Figure 15-3

Notice that no specific languages or platforms are named in this graphic, except to point out ASP.NET, of
course. The Web service can be created using ASP.NET or any other language that works with SOAP.

You can create a Web service using ASP.NET with C#. However, since C# Express doesn’t include
ASP.NET, you can only be a consumer and use Web services, not create them yourself in C# Express.

Applications that can take
advantage of XML web services

ASP.NET web site

XML web service

In
te

re
nt

Other web sites

Outside desktop
applications

Inside desktop
applications

Intranet
applications

258

Chapter 15

22_589555 ch15.qxd 12/29/05 8:33 PM Page 258

Web Services Infrastructure
The infrastructure of Web services includes four main areas:

❑ XML Web Services Directories. Central location to locate XML Web services created by outside
organizations. The UDDI (Universal Description, Discovery, and Integration) registry is an
example of one of these directories. Your Web service client may not even need to use these if
you know the address of the Web service you are accessing.

❑ XML Web Service Discovery. Discovering documents that describe a particular XML Web
service using the WSDL (Web Services Description Language). The DISCO specification defines
an algorithm for locating service descriptions. Again, if you know the location of the service
description, you can avoid this process.

❑ XML Web Service Description. Defines what types of methods the XML Web service uses. Tells
clients how to interact with an XML Web service so they know how to use it.

❑ XML Web Service Wire Formats. To be able communicate with all platforms and languages, XML
Web services use open wire formats. These are protocols understandable by any system capable
of supporting the most common Web standards. SOAP is the main protocol used.

You can see each of these parts of the infrastructure in Figure 15-4.

Figure 15-4

The client requests the service description.

XML web
service

UDDI (or other
directory service)

XML web
service client

The service description is returned.

The discovery document is returned.

Description3
(http://www.contoso.com/MyWebService.WSDL)

The client requests the XML web service.

The service description is returned.

Wire Format4

Discovery2
(http://www.contoso.com/default.disco)

The client requests the discovery document.

Directory1
(http://uddi.microsoft.org)

A URL to a discovery document is linked.

The client attempts to locate an XML web service.

259

Using Web Services from Your C# Application

22_589555 ch15.qxd 12/29/05 8:33 PM Page 259

Again, Microsoft has gone to great pains to make sure that you don’t have to go through all these steps
yourself. These steps are performed when you create Web references in your applications.

Locating and Referencing Web Services
There are actually several ways to locate available Web services: being notified, utilizing the UDDI inside
C# Express, and searching on the Web.

Locating Web Services through Notification
This way most often happens if you are using Web services through an intranet in a corporation and the
IT department has created a Web service to expose a database used by the company. Also, some financial
services companies come up with Web services and notify their clients when they have a Web service
available. Since there are a number of ways to consume Web services besides programming code, some
companies have gone to Web services to let their people, usually developers, access their databases.

Using C# Express to Locate and Create a Web Reference
When first starting out with Web services, you may find it easier to locate and create a reference to a Web
service using the dialog boxes in C# Express. The reason is that it will walk you through the steps to
searching for and creating a reference to the Web service. After you create your application, before you
can use a Web service to create a reference, actually a Web reference, to the Web service. There are a cou-
ple of ways to accomplish this: by choosing Project ➪ Add Web Reference . . . or by right-clicking while
on the Project or Reference node in the Solution Explorer, and then choosing Add Web Reference

Once you have done either of these methods, the Add Web Reference dialog box appears, as shown in
Figure 15-5.

Figure 15-5

260

Chapter 15

22_589555 ch15.qxd 12/29/05 8:33 PM Page 260

Figure 15-5 shows the five links to locate Web services. The first two choices would be used if you were
testing out your own Web service, and the third would be if someone at your company had a Web ser-
vice they created, or you were again utilizing one of your own that you are hosting on a server located
on your local network. The last choice, Test Microsoft UDDI Directory, lets you test Web services that are
off-site.

The choice of UDDI Directory will be the one you want to use to locate a useful Web service that is actually
in production.

Be aware that unless you know the company putting out the Web services, if you are using the Web ser-
vice, it may not be available for future use if the company decides not to have it there any longer. The
Web services provided in this chapter have been available for a couple of years or are part of a group large
enough that they should be available for you. However, just be on notice when you use Web services in
your own applications.

I am not recommending one Web service provider over another, and no inference as to the credibility of
the Web services or their providers one way or another is implied.

Once you have clicked the UDDI Directory, you are brought to the first page of the directory, shown in
Figure 15-6.

Figure 15-6

At this point, if you know the name of the Web service you want or provider to find, you can fill it in or
click the following links. When you scroll down a bit, you will see the choice “VS Web Service Search
Categorization.” This option then presents some categories for you to choose from. One category is
Financial. If you were looking for a Web service that returns stock quotes, this is where you would
expect to find one.

261

Using Web Services from Your C# Application

22_589555 ch15.qxd 12/29/05 8:33 PM Page 261

At this point the UDDI takes you to possible subcategory screens, and then displays a list of different
possible Web services that handle financial tasks. In the case of what you will be using for the next Try It
Out, CDYNE Corporation has a Delayed Stock Quote Web service that works nicely. You can see the
information for the Web service in Figure 15-7.

Figure 15-7

After you click the link displayed in Interface Definitions, the Web service details are displayed, and you
can then decide to click Add Reference. The Web reference is then created in your project, and you can
use the classes, properties, and methods provided by the Web service. In fact, you can even access them
using the object browser, as shown in Figure 15-8.

Now that you have seen how to do it, it is time for you to go ahead and add your own Web reference to
a Web service. You will utilize the Web service provided by CYNE Corporation.

Try It Out Create the Web Reference Using C# Express
Using the project you created for the chapter, follow the steps presented here to create a Web reference to
the Delayed Stock Quote Web service.

1. Select Project ➪ Add Reference

2. Click the UDDI Directory link under the Start Browsing for Web Services label.

3. Scroll down in the UDDI directory page, and click VS Web Service Search Categorization.

4. In the categories displayed, click Financial.

262

Chapter 15

22_589555 ch15.qxd 12/29/05 8:33 PM Page 262

5. Click Search on the next page displayed, since there are no subcategories. The initial choices are
displayed, in which CYNE Corporation is included, with the Delayed Stock Quote listed below,
as shown in Figure 15-9.

Figure 15-8

Figure 15-9

263

Using Web Services from Your C# Application

22_589555 ch15.qxd 12/29/05 8:33 PM Page 263

6. Click the plus sign next to the Delayed Stock Quote, and scroll down in the browser. You now
see the full description of the Web service, as shown in Figure 15-7.

7. Click the http:// address displayed as the Interface Definition. You now see the definition dis-
played, and the Add Reference button is enabled. The definition for the Web service is shown in
Figure 15-10.

Figure 15-10

It is not a bad idea to copy and paste the information displayed here into a text file, or better yet, press
Ctrl + Print Screen and save it to a file. While you can look in the object browser to get this information,
it is nice to have it displayed in this format. Otherwise, you will have to go to the provider’s Web site to
locate this information, and a lot of times they won’t have it documented as well.

8. Click Add Reference. The Web reference is now created in your project.

Because the UDDI is so dynamic, here is the actual URL for the Web service as well:
http://ws.cdyne.com/delayedstockquote/delayedstockquote.asmx.

At this point, you won’t be actually using the Web service that you have created a reference to. You will use
it shortly, but before that, I want to show you how to locate and use a reference that you get from searching
the Internet directly. I will come back to this Web service to show you how to use it in your code.

Searching for Web Services on the Web
This task and the task covered in the next section use nearly the same method, except here you use a
search engine such as Google to locate a particular type of Web service. For example, if I want to locate a
weather Web service that could give me the weather for particular locations, I would go to Google and
search for “weather Web service”. When I do, I see the results shown in Figure 15-11.

264

Chapter 15

22_589555 ch15.qxd 12/29/05 8:33 PM Page 264

Figure 15-11

As you can see from 15-11, I immediately found a Web service that is what I am looking for. In fact, this
service is used in an example that you perform later in this chapter, so you will see how to include a
Web service that isn’t found using C# Express directly. When clicking the link for GlobalWeather Web
Service, the Web services page is displayed with a link to the Web service itself. Further information
about the service is given, as shown in Figure 15-12.

The data for this Web service is supplied by NOAA, which is pretty amazing if you think about the fact
that you are actually using data provided by the National Oceanic and Atmospheric Administration
with less then an hour between updates.

Scrolling down the page, you can see the exact details on how to use this Web service in an application.
You can see the methods and properties that are exposed for the Web service, as well as details on the
link you need to create a Web reference, in Figure 15-13.

265

Using Web Services from Your C# Application

22_589555 ch15.qxd 12/29/05 8:33 PM Page 265

Figure 15-12

Figure 15-13

266

Chapter 15

22_589555 ch15.qxd 12/29/05 8:33 PM Page 266

When on the page displayed in Figure 15-13, you can see the WSDL URL listed. At this point you can
highlight the string, up to where it says (Simplify this WSDL). Then copy and paste it into the address in
the Add Web Reference dialog box discussed in the previous section. Once you do that and press Enter,
the Web server details appear, as shown in Figure 15-14.

Figure 15-14

This saves you from all the steps taken in the previous section to locate the WSDL URL that was eventually
provided by the UDDI directory.

Notice that the description for this Web service isn’t as detailed as the one displayed for the Delayed
Stock Quote Web service in Figure 15-10. Also, not all Web services are as easy to find or as nicely sup-
ported as the ones described in this book. Also, all Web services are subject to change at the whim of the
developers who create them.

Try It Out Add a Web Reference Searching the Web
Now it is your chance to create a Web reference to the GlobalWeather web service. For this Try It Out
you use your Web browser along with the project that you have been using in this chapter.

1. Open your browser.

2. Type www.google.com in the address bar.

3. Type Weather Web Service in the Search field.

4. Click the Google Search button. The list of search results appears.

5. Click the first choice in the list, GlobalWeather Web Service. You are taken to the Web site for the
Web service.

267

Using Web Services from Your C# Application

22_589555 ch15.qxd 12/29/05 8:33 PM Page 267

6. Scroll down the Web page until you now see the definition for the Web service as was displayed
in Figure 15-13.

7. Highlight the WSDL URL.

8. Choose Edit ➪ Copy.

9. Switch back to the C# Express project you created for this chapter.

10. Choose Project ➪ Add Web Reference

11. Place the cursor in the URL field, and click Edit ➪ Paste. The WSDL URL is copied into the URL
field of the Add Web Reference dialog box.

12. Click Go. The Global Web Service definition is displayed in the browse window.

13. Click Add Reference. The Web reference is created in the project, and you are ready to go with
two Web services in your project.

There you go; you have now created Web references using two different methods. The method you
use to locate the Web service will depend on whether you can find the Web service faster using one
way than the other. The way just shown it is my preferred method, since you can specify what you are
looking for a little bit more precisely than the first method you used in C# Express.

One last thing to keep in mind when comparing Web services is to make sure they have the various
methods that you need to accomplish the job.

Now that you have the Web references in your project, it is time to do something with them. To make it
as straightforward as possible, start off by creating the form and utilizing the DelayedStockQuote
Web service, for which you set the Web reference earlier in this chapter. The form used to display the
information from the Web service is shown in Figure 15-15.

Figure 15-15

268

Chapter 15

22_589555 ch15.qxd 12/29/05 8:33 PM Page 268

Using the Web Service in Your Code
The really cool thing about using Web services in your applications is that they don’t take much more to
use than any of the other classes in .NET, and a lot less than many. Of course, how much work it takes to
utilize them will depend on what features are included. The more features a Web service has, then possibly
the more effort it will take to use them — although this is not necessarily true. Many services, such as
the GlobalWeather Web service, have an extensive object model, but also provide some methods and
properties that can be used in a fairly straightforward manner.

Coding for the DelayedStockQuote Web Service
To get going, you will learn how to integrate the DelayedStockQuote in your application. When working
with a Web service, you need to learn what classes and their methods and properties are available for use.
One of the ways to do this is to examine the Web service classes in the Object Browser. If you were to do
so with DelayedStockQuote, you would see that it is in fact only one of the classes that is used. The
other useful thing to note is that the method you will want to use is called GetQuoteDataSet. This
method takes a stock symbol as a parameter, and a license. Since you are only going to be testing the Web
service, you will pass “0” as the license key. By double-clicking the new Web reference in the Solution
Explorer, you can see that the Web service references have defined a namespace with types for you to use
in your program.

While not all Web services do so, many let you test their services out for a trial period.

Knowing what you now know about the Web service, you can declare the necessary objects and get to
work. Now it is just a matter of using the same syntax you have been using throughout the book:

com.cdyne.ws.DelayedStockQuote wsStock = new com.cdyne.ws.DelayedStockQuote();

Once this occurs you, get full IntelliSense on the properties and methods, as you can see in Figure 15-16.

You should be very familiar with the code displayed. I tend to use the full path of the Web services I use
so I can remember them as I work with them. The line of code declares the variable wsStock as a
DelayedStockQuote object. Next, you assign a DataSet object that is returned from the
GetQuoteDataSet method:

DataSet dsStocks = wsStock.GetQuoteDataSet(this.txtStockSymbol.Text, “0”);

DataSets were first introduced in Chapter 12. The last thing to do is to assign the dsStocks DataSet to
the DataGridView control on the form. The DataGridView was also discussed in Chapter 12.

this.dataGridView1.DataSource = dsStocks.Tables[0];

Some code can be added for exception handling and such.

269

Using Web Services from Your C# Application

22_589555 ch15.qxd 12/29/05 8:33 PM Page 269

Figure 15-16

Try It Out Create a Form for Using a DelayStockQuote Web Service
By now, creating this form, and even the code introduced in this section, should be pretty old hat. As
you keep using these examples and others, you will start to find it is just a matter of learning how to use
the new classes that have been created. Using the project you created in this chapter:

1. Select Project ➪ Add Windows Form . . ., and name it as desired. For the purpose of this example,
I named it frmGetQuotes.cs.

2. Add a Label (Text property set to “Stock Symbol”), TextBox (Name property set to
txtStockSymbol), and Button (Name property set to btnGetStock) control as displayed in
Figure 15-17.

3. Drag and drop a DataGridView control from the Toolbox onto the form, positioning as shown
in Figure 15-16. Leave the name of the DataGridView of the control as it was, and just make a
note of it.

4. Set the Anchor property to be Top, Bottom, Left, and Right.

5. Double-click the btnGetStock button. The code file is displayed with the Click routine cre-
ated as shown here:

270

Chapter 15

22_589555 ch15.qxd 12/29/05 8:33 PM Page 270

private void btnGetStock_Click(object sender, EventArgs e)
{

}

Figure 15-17

6. Type the following lines of code inside the opening and closing curly brackets:

com.cdyne.ws.DelayedStockQuote wsStock =
new com.cdyne.ws.DelayedStockQuote();

DataSet dsStocks =
wsStock.GetQuoteDataSet(this.txtStockSymbol.Text, “0”);

this.dataGridView1.DataSource = dsStocks.Tables[0];

The complete code now looks as follows:

private void btnGetStock_Click(object sender, EventArgs e)
{

com.cdyne.ws.DelayedStockQuote wsStock =
new com.cdyne.ws.DelayedStockQuote();

DataSet dsStocks =
wsStock.GetQuoteDataSet(this.txtStockSymbol.Text, “0”);

this.dataGridView1.DataSource = dsStocks.Tables[0];
}

7. Add a button to the main form created for the chapter. Add the following line of code, changing
the name of the form called to what you named it:

271

Using Web Services from Your C# Application

22_589555 ch15.qxd 12/29/05 8:33 PM Page 271

private void btnCheckStocks_Click(object sender, EventArgs e)
{

frmGetQuotes frmCurr = new frmGetQuotes();
frmCurr.Show();

}

8. Press F5 to build and run the application.

By typing in a stock symbols such as MSFT and FOX, you can test the Web service. Another good
extension of this would be to access a Web service to populate a drop-down with the stocks available.
When you want to bring back information on more than one stock, separate the symbols in the text box
with a comma.

I have noticed that with most Web services the first time you call them in an application, the performance
is somewhat slower than I liked. However, when you call them a consecutive time in the same instance of
the application, the performance is much improved. This will, of course, depend on the Web services
themselves.

Coding for the GlobalWeather Web Service
While the coding for the example using this Web service is a little more extensive, it is because more
information will be displayed. Even then, it is actually pretty straightforward to display quite a bit
of information. In this example, with an airport code supplied, not only will you display the current
temperature but also the current station information for sky coverage, visibility, and wind. You can see
the form in action in Figure 15-18.

Figure 15-18

The example in Figure 15-18, which you will create, shows not even the tip of iceberg of the information
available in this Web service, but maybe a seagull sitting on the tip of the iceberg. Each piece of weather
information displayed in Figure 15-18 is made up of smaller properties strung together for convenience.

272

Chapter 15

22_589555 ch15.qxd 12/29/05 8:33 PM Page 272

Each of the lines displayed happened to reflect a class of the WeatherReport class, which you can see in
the Object Browser, shown in Figure 15-19.

Figure 15-19

You can see the information used in the example, and more. For this Web service, there are several steps
you need to take when utilizing the classes within the service. The first object you need to create is a
GlobalWeather object, as shown with the following code:

com.capescience.live.GlobalWeather wsWeather =
new com.capescience.live.GlobalWeather();

Once you have instantiated this object, you then have a number of methods you can execute to retrieve
information various ways. For the purpose of this example, you will use the getWeatherReport
method to retrieve the properties of the WeatherReport object. The instantiation of the
WeatherReport object and calling of the getWeatherReport method can be seen here:

273

Using Web Services from Your C# Application

22_589555 ch15.qxd 12/29/05 8:33 PM Page 273

com.capescience.live.WeatherReport wsReport =
wsWeather.getWeatherReport(this.txtAirportToLocate.Text);

Once you have the WeatherReport, as referenced by wsReport, you can then access the various classes
representing the various types of information:

lblStation.Text = wsReport.station.@string;
lblSky.Text = wsReport.sky.@string;
lblVisibility.Text = wsReport.visibility.@string;
lblWind.Text = wsReport.wind.@string;
lblTemperature.Text = wsReport.temperature.@string;

Interestingly, to get the complete string of information, you will use the string property of the particular
class you are retrieving. However, since the word string is a key word in C#, you will have to tell C# to use
the literal value of “string” instead of the keyword meaning, in this case the property, not the keyword. To
specify this, you use the @ symbol, as you do when you want to use the “\” as a backslash instead of as a
control character, such as in \n the newline command.

Try It Out Creating the Form and Code for the GlobalWeather Web Service
Continuing to work with the form created in the chapter, you will add the form and code necessary to
call the methods in the GlobalWeather Web service:

1. Select Project ➪ Add Windows Form . . . , and name it as desired. For the purpose of this exam-
ple, I named it frmGetWeather.cs.

2. Add a Label (Text property set to “Airport to Locate”), TextBox (Name property set to
txtAirportToLocate), and Button (Name property set to btnGetWeather) control as shown
in Figure 15-20.

Figure 15-20

274

Chapter 15

22_589555 ch15.qxd 12/29/05 8:33 PM Page 274

3. For each of the five pieces of information, also displayed in Figure 15-20, add labels down the
left side of the form, which the Text properties set to “Station Info,” “Sky,” “Visibility,” “Wind,”
and “Temperature.”

4. On the right side of the form you will add five additional Label controls, corresponding to the
label added in Step 3, with the Name property: lblStation, lblSky, lblVisibility,
lblWind, and lblTemperature.

5. Set the AutoSize property on each of the Label controls added in Step 4 to False. This will
allow you to adjust the height and width of the controls.

6. Double-click btnGetWeather. The code file for the form opens, and the new routine is created
for the Click event of btnGetWeather, as shown here:

private void btnGetWeather_Click(object sender, EventArgs e)
{

}

7. Type the following code inside the code block for btnGetWeather_Click routine.

com.capescience.live.GlobalWeather wsWeather =
new com.capescience.live.GlobalWeather();

com.capescience.live.WeatherReport wsReport =
wsWeather.getWeatherReport(this.txtAirportToLocate.Text);

lblStation.Text = wsReport.station.@string;
lblSky.Text = wsReport.sky.@string;
lblVisibility.Text = wsReport.visibility.@string;
lblWind.Text = wsReport.wind.@string;
lblTemperature.Text = wsReport.temperature.@string;

The final routine looks as follows:

private void btnGetWeather_Click(object sender, EventArgs e)
{

com.capescience.live.GlobalWeather wsWeather =
new com.capescience.live.GlobalWeather();

com.capescience.live.WeatherReport wsReport =
wsWeather.getWeatherReport(this.txtAirportToLocate.Text);

lblStation.Text = wsReport.station.@string;
lblSky.Text = wsReport.sky.@string;
lblVisibility.Text = wsReport.visibility.@string;
lblWind.Text = wsReport.wind.@string;
lblTemperature.Text = wsReport.temperature.@string;

}

8. Press F5 to build and execute the application. The form opens waiting for you to enter an airport
code for which to retrieve weather information.

9. Type an airport code such as SEA or LAX.

10. Click the btnGetWeather button. The information is displayed.

275

Using Web Services from Your C# Application

22_589555 ch15.qxd 12/29/05 8:33 PM Page 275

For a list of other airport codes, you can go back to the GlobalWeather Web service Web page, shown in
Figure 15-13.

Note that if you were using this for a real application, you really ought to check for a null return value,
which you get for a nonexistent airport code. Without checking, you get a null-reference exception.

Summary
The limitations on how data is transmitted and received in a convenient yet secured manner has been an
issue since information started being traded among companies and locations. The latest method, Web
Services, provides both convenience and security for developers in a way like never before.

When companies provide Web services, developers can use various languages for the consumption of the
Web service, provided the language supports it. In C# Express and the other Visual Studio products,
adding Web services to your applications is as simple as adding a Web reference, declaring objects using
the classes provided by the Web service, and utilizing the properties and methods of those types provided
by the Web service.

This chapter showed you how to locate Web services both on the Web and using C# Express. It then went
on to discuss how to create Web references and use them inside your applications, giving examples of
retrieving stock quotes and weather information.

Exercises
1. What does UDDI stand for?

2. What are the four sections of Web services infrastructure?

3. Name two of the ways to locate Web services that you can use in your applications.

4. What utility enables you to discover the various classes, methods, and properties once a Web
reference has been established for a Web service?

276

Chapter 15

22_589555 ch15.qxd 12/29/05 8:33 PM Page 276

16
Publishing Your Application

and Next Steps

No book on development is complete nowadays without discussing how to publish your
applications, also called deployment. When you publish or deploy your application, you are
making it available for other people’s use. In the past it was a big deal to create and maintain the
files to distribute applications. I remember in the early Microsoft Access days when I distributed
an application, it took 10 floppy disks to hold all the parts of the program.

What you want to do with your final application will determine how you want to publish it.

This chapter wraps up everything I have been talking about with regard to C# Express and what
you can do with it. In this chapter, you will:

❑ Find out how to deploy your application.

❑ Look at some of the next steps you want to take, such as developing C# Web applications.

❑ Read about some of the specific features of Visual Web Developer Express.

❑ Take a look at some third-party tools.

Publishing Your C# Express
Applications?

Unfortunately, no deployment tools are included in the Express products. With the full versions of
Visual Studio products project setup templates are included to help your deploy (distribute) your
applications. If you want to give your application to someone to use, then you will need to give
them all the files in the Bin\Release folder (or Bin\Debug) located under your project folder.

23_589555 ch16.qxd 12/29/05 8:44 PM Page 277

The person using your application will then need to have the .NET Framework 2.0 installed on their
machine. Generally, the idea behind using the Express products is to get you going in development and
then have you move on if you are going to be distributing the applications you create.

Where to Go from Here?
You have learned so much in this book. I have tried to put you on the path to really enjoying what you
are doing with C# Express and to understand the power you have available. These next sections take a
look at what are the next steps to working with C# besides just getting as much experience as possible
with the product.

Developing for the Web: Visual Web Developer 2005
Express Edition

As mentioned, not only can C# be used in Windows forms as has been shown throughout the book but also
for Web development. Along with the other .NET products, Microsoft has created a Web development
environment called ASP.NET. There are a couple of ways to get into ASP.NET:

❑ Upgrade to the full version of Visual Studio .NET and use ASP.NET, discussed in the section
entitled “Moving Up to Visual Studio .NET,” found later in this chapter.

❑ Download Visual Web Developer 2005 Express Edition. Like C# Express, this product has been
created to introduce students, hobbyists, and other new developers to the world of programming,
in this case programming on the Internet.

Of the two alternatives, the later is the cheapest way to get going in ASP.NET. Built on ASP 2.0, Visual
Web Developer 2005 Express Edition (VWD) gives developers tools they need to build Web applications.
Much like C# Express, the Web Developer 2003 Express includes the following:

❑ Visual designers. Let you drag and drop controls onto Web forms, just as you would Windows
forms.

❑ Code editor. Makes writing HTML quicker and more conveniently than ever and includes that
great product with the silly name of IntelliSense. HTML tags, including methods and properties,
are listed as you write your code.

❑ Microsoft SQL Server 2005 Express. Integrated using the Database Explorer, similar if not the
same data controls are included so that you can drag and drop them onto your Web forms with
little or no coding.

❑ Starter kits. These are included to help you get going, including the Personal Web Starter Kit.

When using the full version of ASP.NET, you can create your own XML Web Services, as discussed in
Chapter 15.

In addition to the similarities with C# Express, VWD includes the capability of installing a personal Web
server not requiring IIS.

One way to get started using VWD is to buy Wrox’s ASP.NET 2.0 Visual Web Developer 2005 Express
Edition Starter Kit. Another is to download a copy as shown in the next Try It Out.

278

Chapter 16

23_589555 ch16.qxd 12/29/05 8:44 PM Page 278

Try It Out Downloading and Installing Visual Web Developer
2005 Express Edition

Using your favorite browser:

1. Type http://lab.msdn.microsoft.com/express/vwd/default.aspx. You are taken to the home page
for VWD, as shown in Figure 16-1.

Figure 16-1

2. Click Download now.

3. After filling out the survey, click Download. The standard Run, Save Internet dialog box
appears.

4. Click Run. The Setup program starts, as shown in Figure 16-2.

279

Publishing Your Application and Next Steps

23_589555 ch16.qxd 12/29/05 8:44 PM Page 279

Figure 16-2

5. Click Next. The next page on the setup form asks which destination folder you want to install
VWD into, as shown in Figure 16-3.

Figure 16-3

6. Click Install. The setup program downloads and installs VWD.

280

Chapter 16

23_589555 ch16.qxd 12/29/05 8:44 PM Page 280

Moving Up to Visual Studio .NET
The other possibility is to move up to the big time and make an investment in Visual Studio .NET 2005.
Everything you learned in this book about C# and the tools for development apply to the full-blown
version. You will find the IDE almost exactly the same but with additional tools.

With Visual Studio .NET you can use ASP.NET 2.0 to create Web sites as well as Web services. You can
take your applications and use them in Visual Studio .NET 2005. You will also notice quite a few more
templates, allowing you to create additional types of applications such as Windows service applications
and installation packages.

Using Third Party Tools and Other Sources of Information
A number of third-party tools and libraries are available for your use. Here are just a few of the companies
that sell tools, and the uses you can put them to:

❑ FMS Inc. — Total .NET Developer Suite. These tools provide various services for everything from
analyzing your .NET applications to making best-practice and performance recommendations.
The tool I like the best is Total .NET Source Book. This tool is a library of code that you can use in
your applications. One of the coolest features is that it takes advantage of Web services to retrieve
updates and new code for you.

This tool is great for checking out how to perform various tasks and use code already created
for you. Find out more about it at www.fmsinc.com.

❑ dtSearch — Full Text Retrieval. This tool is an engine that helps you perform full text searches on
various kinds of documents such as Word documents, PDFs, HTML, and even other databases
such as SQL Server and Access. Included is an engine that has fully managed code driving it,
with classes using properties and methods to help make life simpler. You can find the Web site for
dtSearch at www.dtsearch.com.

dtSearch is a more specialized tool that you may never have a need for, but it is so powerful that
it is worthwhile to mention.

❑ www.dotnetjunkies.com. This Web site is created specially for .NET developers. There are
various authors, including myself, who write for the site because we love the subject matter. You
can check out my column called “The First Hit,” which is specifically for new .NET developers
such as yourself.

Note that I get no monetary recompense from either of the companies mentioned here. Their products
just rock.

Summary
Throughout the book, you have seen various ways to make C# perform tasks the way you need it
to. Everything from simply creating a form, to utilizing Web services over the Net, to publishing your
applications was covered. And it only gets better from here on out. As you are working with C# and C#
Express, you will get more and more comfortable with using the various tools.

281

Publishing Your Application and Next Steps

23_589555 ch16.qxd 12/29/05 8:44 PM Page 281

In this chapter, you saw how you could publish your C# applications in a number of different ways, either
on a CD, the Web, or on a local network. You also saw some of the various tools available out there for
your use in your applications. These tools can be located using the Internet and are for different purposes.

Exercises
1. What is it called when your application is ready to be distributed?

2. What product is used for Web development both in Visual Studio .NET 2005 and Visual Web
Development Express?

3. What is the name of my column on DotNetJunkies.com?

282

Chapter 16

23_589555 ch16.qxd 12/29/05 8:44 PM Page 282

A
Answers to Exercises

Chapter 1

Exercises

1. What is the difference between C# and Visual C# Express?

2. What are the four sections on the C# Express start page?

3. What does the acronym IDE stand for?

4. Name three of the tools available in the C# Express IDE.

5. What is the difference between a console application and Windows application?

Answers

1. C# is a programming language. Visual C# Express is a development environment.

2. Open an Existing Project, Getting Started, Visual C# Express Headlines, and MSDN:
Visual C#.

3. Integrated Development Environment.

4. Solution Explorer, Database Explorer, and Task List.

5. Console applications generally are utilities that are run without user intervention,
whereas Windows applications are interactive programs for users with forms.

Chapter 2

Exercises

1. What is the difference between hardware and software?

2. What are the differences between compiled and interpreted languages?

3. Name the three levels of Windows programming mentioned in this chapter.

4. What are dynamic-linked libraries used for?

24_589555 appa.qxd 12/29/05 8:30 PM Page 283

Answers

1. Hardware is the computer and peripherals, whereas software is instructions that make up
applications that run on hardware.

2. Compiled languages are translated (compiled) from a more human-type language into a
machine language all at once. Interpreted languages are translated as the program is run.

3. Application level, Windows level, and system level.

4. These are libraries of routines that can be utilized by other applications.

Chapter 3

Exercises

1. Can you include a Windows form in a console application?

2. What is the extension of the file that is used for a Windows form?

3. What pane in the IDE contains the various controls used on a form?

4. Height, Width, and Text are _______ of a form.

5. What is the property that displays a caption on a button?

Answers

1. Yes

2. .resx

3. Toolbox

4. Properties

5. Text

Chapter 4

Exercises

1. Name the two main parts of the .NET Framework.

2. What is the category in the Solution Explorer that shows the list of namespaces being used?

3. What feature lists parts of namespaces as you are typing the statements in code?

4. You can use _____ _____ to look at the various namespaces, classes and methods.

5. What are the two ways of using namespaces in code?

Answers

1. Common Language Runtime and .NET Framework Class Library

2. References

284

Appendix A

24_589555 appa.qxd 12/29/05 8:30 PM Page 284

3. IntelliSense

4. Object Browser

5. Supplying the fully qualified name and the Using directive.

Chapter 5

Exercises

1. What is the difference between variables and constants?

2. How do you add a value to an existing variable?

3. Multiply the value in intValue1 by 10 and assign the answer to a variable called intAnswer.

4. What is the command used to convert a C# type of double to int.

5. Declare the variable named intMonth and assign it the value 10 in a single line.

Answers

1. Variables can be updated in the application, whereas constants are assigned once.

2. Using the equal (=) sign.

3. intAnswer = intValue * 10;

4. Convert.ToInt32()

5. int intMonth = 10;

Chapter 6

Exercises

1. Name the three different types of errors you can debug.

2. What are some of the ways to work with breakpoints?

3. Name two of the windows that are used for displaying values in break mode.

4. What is the technology that enables you to hover the mouse over variables and see their values
in break mode?

5. What are the three commands for stepping through code?

Answers

1. Syntax and semantic/logical errors.

2. Set breakpoint, disable breakpoint, and remove breakpoint.

3. Immediate window and locals window.

4. IntelliSense.

5. Step Into, Step Over, Run to Cursor.

285

Answers to Exercises

24_589555 appa.qxd 12/29/05 8:30 PM Page 285

Chapter 7

Exercises

1. When would you use an if . . . else statement versus a switch . . . case statement?

2. What category of statements does the if . . . else statement fall into?

3. What is the different between the for and foreach statements?

4. Which statement, do or while, does the code execute at least once if the expression starts as
false?

5. If the developer wants to have a code block occur whether an exception occurs or not, which
statement does the developer use with the try statement?

Answers

1. If there is only one or two choices, using the if . . . else statement.

2. Selection.

3. for is used with an index; foreach iterates though collections and arrays.

4. do

5. finally

Chapter 8

Exercises

1. What do MDI and SDI stand for?

2. What are switchboards used for?

3. What is the difference between a ToolStrip and ToolStripContainer control?

4. How do you add code to the Click event on a MenuStrip control?

Answers

1. Multiple-document interface and single-document interface.

2. Forms that launch other forms, in addition to menus.

3. ToolStrip creates toolbars on forms; ToolStripContainer lets you place other strip controls
onto the form.

4. Double-click on the control.

Chapter 9

Exercises

1. What is the name of the enumerator used for setting the SelectionAlignment property of the
RichTextBox control.

286

Appendix A

24_589555 appa.qxd 12/29/05 8:30 PM Page 286

2. What is one of the methods you can use in code to display all the dialog boxes displayed in this
chapters?

3. Which property on the RichTextBox do you use to utilize a font from the FontDialog?

4. What happens if you choose File ➪ Open but then click Cancel?

Answers

1. HorizontalAlignment

2. ShowDialog()

3. SelectionFont

4. With the code provided, nothing.

Chapter 10

Exercises

1. What is the process of converting your data from flat-file format to a relational database format
called?

2. Name the three types of relationships discussed in the chapter.

3. In Access you have fields and records. What are these elements called in SQL Server?

4. Give a couple of the benefits to using SQL Server databases.

5. Name the extensions of the Access and SQL Server database files.

Answers

1. Normalizing the data.

2. One-to-one, one-to-many, and many-to-many.

3. Columns and rows.

4. Greater volume of data and better to use for the Internet.

5. Acess: *.mdb; SQL Server: *.mdf.

Chapter 11

Exercises

1. What does MSDE stand for?

2. What are the two main tools provided in SQL Server Express?

3. Which tool do you use in C# Express to work with databases in and out of projects?

4. What is the difference between a view and a stored procedure?

287

Answers to Exercises

24_589555 appa.qxd 12/29/05 8:30 PM Page 287

Answers

1. Microsoft Desktop Edition

2. Database Explorer and data sources

3. Database Explorer

4. Views are used for displaying data, whereas stored procedures are used for updating data.

Chapter 12

Exercises

1. Which objects do you need to add to your project in order to utilize data in your form?

2. Which control (and underlying class) keeps track of data in memory?

3. What control is used to bind data to controls such as the TextBox control, and provide
navigation?

4. What is the difference between the BindingNavigator and BindingSource controls?

Answers

1. DataSources.

2. DataSets.

3. BindingSource and BindingNavigator.

4. BindingSource binds to a source, and BindingNavigator provides navigation after binding
to the BindingSource control.

Chapter 13

Exercises

1. What were three prior types of access methods provided by Microsoft in the past and men-
tioned in the chapter?

2. In ADO.NET the main object for working with data is the DataSet. What was the main object
in the prior version?

3. ADO used connected data methodology. What does ADO.NET use?

4. DataAdapters are used to load data into DataTables and DataSets. What are Command
objects used for?

Answers

1. DAO, ADO, and RDO.

2. Recordset.

288

Appendix A

24_589555 appa.qxd 12/29/05 8:30 PM Page 288

3. Disconnected.

4. Performing updates on data using stored procedures, as well as providing the SQL commands
for data adapters.

Chapter 14

Exercises

1. What are the two properties for setting the range on a MonthCalendar control?

2. What is the control for displaying two different objects in it and letting them be resized
separately?

3. Name the four types of controls that can be used in the StatusStrip control.

4. Which method on the System.DateTime class returns the number of days in a month, and
what are the parameters it requires?

Answers

1. SelectionStart and SelectionEnd

2. SplitContainer

3. StatusLabel, ProgressBar, DropDownButton, and SplitButton

4. DaysInMonth(). It requires the year and month be passed

Chapter 15

Exercises

1. What does UDDI stand for?

2. What are the four sections of Web services infrastructure?

3. Name two of the ways to locate Web services that you can use in your applications.

4. What utility enables you to discover the various classes, methods, and properties once a Web
reference has been established for a Web service?

Answers

1. Universal Description, Discovery, and Integration

2. Directory, Discovery, Description, and Wire Format

3. UDDI and Googling

4. Object Browser

289

Answers to Exercises

24_589555 appa.qxd 12/29/05 8:30 PM Page 289

Chapter 16

Exercises

1. What is it called when your application is ready to be distributed?

2. What product is used for Web development both in Visual Studio .NET 2005 and Visual Web
Development Express?

3. What is the name of my column on DotNetJunkies.com?

Answers

1. Ready for deployment

2. ASP.NET

3. The First Hit

290

Appendix A

24_589555 appa.qxd 12/29/05 8:30 PM Page 290

In
de

x

Index

SYMBOLS AND
NUMERICS
+ (addition) arithmetic operator, 72
-- (decrement) arithmetic operator, 72
/ (division) arithmetic operator, 72
== (equal) operator, 100
> (greater than operator), 100
>= (greater than or equal to) operator, 100
++ (increment) arithmetic operator, 72
< (less than operator), 100
<= (less than or equal to) operator, 100
&& (logical AND) operator, 101
|| (logical OR) operator, 101
% (modulus) arithmetic operator, 72
* (multiplication) arithmetic operator, 72
!= (not equal to) operator, 100
() (parentheses) in operations, 73
- (subtraction) arithmetic operator, 72
1NF (first normal form), 175
2NF (second normal form), 175
3NF (third normal form), 175
4NF (fourth normal form), 175

A
AcceptsTab property, 155
Access (Microsoft), 176–178, 182
accessibility properties (forms), 129
Activate event, 26
ActiveX Data Objects (ADO), 207–208
ActiveX Data Objects .NET (ADO.NET)

development history, 208
disconnected data, 208
features, 207–208
populating DataGridView controls, 213–214
populating ListBox controls, 209–212
stored procedures, 214–216

Add Connection dialog box, 185–187
Add Web Reference dialog box, 260

adding
breakpoints, 86
controls, 41–46
tab pages, 226
Web references, 267–268

addition (+) arithmetic operator, 72
ADO (ActiveX Data Objects), 207–208
ADO.NET (ActiveX Data Objects .NET)

development history, 208
disconnected data, 208
features, 207–208
populating DataGridView controls, 213–214
populating ListBox controls, 209–212
stored procedures, 214–216

ADO.NET classes
DataSet, 208–209
DataTable, 209–210
DataView, 209
SqlCommand, 209, 212, 214
SqlConnection, 209, 212
SqlDataAdapter, 209–210

aligning controls, 141–143
Altair PC, 23
AND (&&) operator, 101
answers to exercises, 283–290
appearance properties (forms), 129
application deployment

BinRelease folder, 277
.NET Framework, 278
tools, 277

applications
business applications, 22
console applications, 10, 30
defined, 22
demo applications

Browsing Web Files, 222, 228–238
Date Selection and Display, 222–223, 239–243
progress bars, 224, 243–249
status bars, 224, 243, 249–252

25_589555 bindex.qxd 12/30/05 5:06 PM Page 291

applications (continued)
drivers, 22
operating system level, 22
utilities, 22
video games, 22
Web services, 258
Windows applications

creating, 10, 31–32
features, 30
files, 39
IDE (Integrated Development Environment), 32–37
Solution Explorer, 37–40
Windows Application template, 31–32

arithmetic operators, 72–73
ASP.NET Web development environment, 258, 278
Assembler programming language, 23
assigning variables, 70–72
attributes. See properties
AutoWordSelection property, 155

B
back ends (databases), 176
Basic programming language, 23
behavior properties (forms), 129
BindingNavigator control

example, 202–205
uses, 199, 202

BindingSource control, 199
BinRelease folder, 277
black box programming, 25
bool data type, 73
boolean algebra, 100
boolean operators, 100–101
branching

boolean operators, 100–101
code blocks, 101–103
defined, 97
if ... else statement, 97, 99–104, 107–108
switch ... case statement, 97, 104–107

break mode, 85–86
breakpoints

adding, 86
deleting, 86
disabling, 86
inserting, 86
setting, 86–87

Browsing Web Files demo application, 222, 228–238

bugs
debugging

break mode, 85–86
breakpoints, 86–87
Call Stack window, 93
Data Visualizers, 94
defined, 82
Edit and Continue feature, 87–89
error list, 82–84
exceptions, 94
executing mode, 85
help, 10
Immediate window, 91–92
IntelliSense, 89–90
Locals window, 90–91
Output window, 92
Quick Console window, 92
stepping through code, 92–93
Watch window, 92

defined, 81
exceptions, 82, 94
reporting, 12
semantic/logical errors, 82
syntax errors, 82

Building Applications help topics, 10–11
BulletIndent property, 155
business applications, 22
Button control, 143, 228
byte data type, 73

C
C#, differences from C# Express, 4
C# Express

differences from C#, 4
features, 24
installing, 5–8
Start page, 7, 9–13

C programming language, 23
cache (memory), 196
calculator

button controls, 143
form properties, 135–137
MenuStrip control, 139–140
TextBox control, 143

Call Stack window, 93
calling switchboards, 132–134
Camel notation, 77

292

applications (continued)

25_589555 bindex.qxd 12/30/05 5:06 PM Page 292

captions (forms), 40–41
catching exceptions

defined, 97
finally statement, 118–119
try ... catch ... finally statement, 119–121
try ... catch statement, 116–118
unhandled exceptions, 115–116

char data type, 73
Class Library (.NET Framework), 51–53
classes

ADO.NET
DataSet, 208–209
DataTable, 209–210
DataView, 209
SqlCommand, 209, 212, 214
SqlConnection, 209, 212
SqlDataAdapter, 209–210

defined, 24
System.IO.Directory, 234

clearing
ListBox control, 233–234
WebBrowser control, 233–234

client/server databases, 176
Close event, 26
closing Object Browser, 57
CLR (Common Language Runtime), 51, 53
COBOL programming language, 23
code

Browsing Web Files demo application, 231–233
events, 46–49
stepping through code, 92–93
Web services, 269

code blocks in selections, 101–103
Color dialog box, 151
ColorDialog control, 152, 158–160
colors used in forms, 128
Common Language Runtime (CLR), 51, 53
Compare method, 74
comparing strings, 74
compiled programming languages, 23–24
computer programming

black box, 25
defined, 21
history, 22–23
OOP (object-oriented programming), 24–25
statements, 22
Windows programming, 25–26

Configuration Manager (SQL Server Express), 182–183
connecting databases, 184–187
Connecting to the Community help topics, 11–13
Console, 16
console applications, 10, 30
const statement, 80
constants

creating, 80
defined, 67–68

Contains method, 74
controls

adding, 41–46
aligning, 141–143
BindingNavigator, 199, 202–205
BindingSource, 199
Button, 143, 228
ColorDialog, 152, 158–160
DataGridView, 199–201, 212–214
DataSet, 199
DateTimePicker, 222–223, 241–243
defined, 24
DropDownButton, 250
FolderBrowserDialog, 222, 228, 232–233
FontDialog, 152, 160–161
inserting, 41–46
ListBox

clearing, 233–234
loading, 234–237
populating, 209–212
uses, 222, 228

MenuStrip, 138–140
MonthCalendar, 222–223, 240–243
moving, 141–142
None, 152
OpenFileDialog, 152, 162–163
ProgressBar, 243–250
properties, 138
purposes of, 137
resizing, 141–142
RichTextBox, 149, 152–157
SaveFileDialog, 152, 164–165
SplitButton, 250
SplitContainer, 222, 228
StatusLabel, 250
StatusStrip, 224, 243, 249–252
Tab, 224–227
TableAdapter, 199

293

controls

In
de

x

25_589555 bindex.qxd 12/30/05 5:06 PM Page 293

controls (continued)
TabStrip, 224
TextBox, 143, 228
ToolStripProgressBar, 250–251
ToolStripStatusLabel, 250–251
WebBrowser

clearing, 233–234
displaying files in, 238–239
navigating, 238–239
uses, 222, 228

converting between variable types, 77–79
Copy method, 74
copying strings, 74
creating

console applications, 10
constants, 80
data sources, 196–199
databases, 184, 187–188
fields (databases), 173
MDI forms, 146–147
projects, 13–14
switchboards, 130–134
tables (databases), 188
views (databases), 191
Web references, 260–262, 264
Windows applications, 10, 31–32

D
Data Access Objects (DAO), 207–208
data controls
BindingNavigator, 199, 202–205
BindingSource, 199
DataGridView, 199–201, 212–214
DataSet, 199
TableAdapter, 199

data properties (forms), 130
data sets

cache, 196
defined, 196–197

Data Source Configuration Wizard, 196–198
data sources

creating, 196–199
defined, 16, 196

data types
fields (databases), 173
standard, 73
strings, 73–74

Data Visualizers, 94

Database Explorer (SQL Server Express), 183–185, 196
Database Solutions (SQL Server Express), 191
databases

Access databases, 176–178, 182
back ends, 176
client/server databases, 176
connections, 184–187
creating, 184, 187–188
defined, 169
fields

creating, 173
data types, 173
defined, 171
naming, 173
properties, 173

file server databases, 176
flat-file model, 171
front ends, 176
naming, 188
normalizing data, 175–176
real-world examples, 170
records, 171
referential integrity, 175
relational model, 172
relationships

defined, 174
many-to-many, 174
one-to-many, 174
one-to-one, 174

SQL Server databases, 178–179
SQL Server Express

Configuration Manager, 182–183
Database Explorer, 183–184, 196
Database Solutions, 191
default instance, 182
features, 4–5, 181–182
installing, 182

tables
creating, 188
defined, 171–172
displaying structure, 188–190
editing, 188
foreign key, 174
maintaining, 185
modifying, 188
primary key, 174
structure, 173–174
viewing data, 190–191

294

controls (continued)

25_589555 bindex.qxd 12/30/05 5:06 PM Page 294

views
creating, 191
maintaining, 185

DataGridView control, 199–201, 212–214
DataSet class (ADO.NET), 208–209
DataSet control, 199
DataTable class (ADO.NET), 209–210
DataView class (ADO.NET), 209
Date Selection and Display demo application, 222–223,

239–243
DateTimePicker control, 222–223, 241–243
Deactivate event, 26
debugging

break mode, 85–86
breakpoints, 86–87
Call Stack window, 93
Data Visualizers, 94
defined, 82
Edit and Continue feature, 87–89
error list, 82–84
exceptions, 94
executing mode, 85
help, 10
Immediate window, 91–92
IntelliSense, 89–90
Locals window, 90–91
Output window, 92
Quick Console window, 92
stepping through code, 92–93
Watch window, 92

decimal data type, 73
declaring variables, 68–70
decrement (--) arithmetic operator, 72
DelayedStockQuote Web service, 269–272
deleting

breakpoints, 86
strings, 74

demo applications
Browsing Web Files, 222, 228–238
Date Selection and Display, 222–223, 239–243
progress bars, 224, 243–249
status bars, 224, 243, 249–252

deploying applications
BinRelease folder, 277
.NET Framework, 278
tools, 277

Description (Web services), 259
design properties (forms), 130

dialog controls
ColorDialog, 152, 158–160
FontDialog, 152, 160–161
OpenFileDialog, 152, 162–163
SaveFileDialog, 152, 164–165

Directory (Web services), 259
disabling breakpoints, 86
Discovery (Web services), 259
displaying

database table structure, 188–190
files in WebBrowser control, 238–239
variables, 89–92

distributing applications
BinRelease folder, 277
.NET Framework, 278
tools, 277

division (/) arithmetic operator, 72
DLL hell, 52–53
DLLs (dynamic-link libraries), 26
do statement, 112–114
Dock property, 153–155
DotNetJunkies.com Web site, 13, 281
double data type, 73
drivers, 22
DropDownButton control, 250
dtSearch (Full Text Retrieval), 281
dynamic-link libraries (DLLs), 26

E
Edit and Continue feature, 87–89
editing

tab pages, 226–227
tables (databases), 188
variables, 90

empty strings, 74
End User License Agreement (EULA), 5
enumerations, 79
equal (==) operator, 100
error list, 82–84
errors in programs

debugging
break mode, 85–86
breakpoints, 86–87
Call Stack window, 93
Data Visualizers, 94
defined, 82
Edit and Continue feature, 87–89

295

errors in programs

In
de

x

25_589555 bindex.qxd 12/30/05 5:06 PM Page 295

errors in programs (continued)
error list, 82–84
exceptions, 94
executing mode, 85
help, 10
Immediate window, 91–92
IntelliSense, 89–90
Locals window, 90–91
Output window, 92
Quick Console window, 92
stepping through code, 92–93
Watch window, 92

defined, 81
exceptions, 82, 94
reporting, 12
semantic/logical errors, 82
syntax errors, 82

EULA (End User License Agreement), 5
events
Activate, 26
Close, 26
code, 46–49
Deactivate, 26
defined, 26
Load, 26

exception handling
defined, 97
finally statement, 118–119
try ... catch ... finally statement, 119–121
try ... catch statement, 116–118
unhandled exceptions, 115–116

exceptions, 82, 94
Exceptions dialog box, 94
executing mode, 85
exercise answers, 283–290
Express series from Microsoft, 4–5
Extensible Markup Language (XML) Web services

applications, 258
ASP.NET, 258
code, 269
DelayedStockQuote, 270–272
Description, 259
Directory, 259
Discovery, 259
example, 256–257
features, 255
GlobalWeather, 272–276
infrastructure, 259

Internet protocols, 257
locating

through notification, 260
with UDDI Directory, 261–264
on the Web, 264–267

.NET Framework, 258
referencing, 260–264
testing, 269
Wire Format, 259

F
fields (databases)

creating, 173
data types, 173
defined, 171
naming, 173
properties, 173

File menu, 152
file server databases, 176
files

viewing with Solution Explorer, 37–38
Windows applications, 39

finally statement, 118–119
first normal form (1NF), 175
flat-file model databases, 171
float data type, 73
FMS Inc. (Total .NET Developer Suite), 281
focus properties (forms), 130
FolderBrowserDialog control, 222, 228, 232–233
Font dialog box, 151
FontDialog control, 152, 160–161
for statement, 109–110
foreach statement, 111
foreign key, 174
Format menu, 152
forms

captions, 40–41
colors, 128
controls

adding, 41–46
aligning, 141–143
BindingNavigator, 199
BindingSource, 199
Button, 143, 228
ColorDialog, 158–160
DataGridView, 199–201, 212–214
DataSet, 199

296

errors in programs (continued)

25_589555 bindex.qxd 12/30/05 5:06 PM Page 296

DateTimePicker, 222–223, 241–243
DropDownButton, 250
FolderBrowserDialog, 222, 228, 232–233
FontDialog, 160–161
inserting, 41–46
ListBox, 209–212, 222, 228, 233–237
MenuStrip, 138–140
MonthCalendar, 222–223, 240–243
moving, 141–142
None, 152
OpenFileDialog, 152, 162–163
ProgressBar, 243–250
properties, 138
purposes of, 137
resizing, 141–142
RichTextBox, 149, 152–157
SaveFileDialog, 152, 164–165
SplitButton, 250
SplitContainer, 222, 228
StatusLabel, 250
StatusStrip, 224, 243, 249–252
Tab, 224–227
TableAdapter, 199
TabStrip, 224
TextBox, 143, 228
ToolStripProgressBar, 250–251
ToolStripStatusLabel, 250–251
WebBrowser, 222, 228, 233–234, 238–239

events
Activate, 26
Close, 26
code, 46–49
Deactivate, 26
defined, 26
Load, 26

MDI forms
creating, 146–147
properties, 144–145

multiple-document interface (MDI), 127–128
properties, 128–130, 135–137
single-document interface (SDI), 127
switchboards

calling, 132–134
creating, 130–134
user interface standards, 126

testing, 48–49
user interface standards, 126, 128
Web form applications, 29
Windows forms, 29

FORTRAN programming language, 23
fourth normal form (4NF), 175
framework for .NET

application deployment, 278
Class Library, 51–53
Common Language Runtime (CLR), 51, 53
DLL hell, 52–53
features, 52–53
installing, 7
Web services, 258

front ends (databases), 176
Full Text Retrieval (dtSearch), 281
fully qualified namespace, 57–61

G
GetFiles method, 234
getWeatherReport method, 273–274
GlobalWeather Web service, 272–276
GotDotNet.com Web site, 13
greater than operator (>), 100
greater than or equal to (>=)operator, 100

H
handling exceptions

defined, 97
finally statement, 118–119
try ... catch ... finally statement, 119–121
try ... catch statement, 116–118
unhandled exceptions, 115–116

hardware (defined), 22
Hello World project, 16–18
help topics

Building Applications, 10–11
Connecting to the Community, 11–13
debugging, 10
Learning How to Program, 11

history of computer programming, 22–23
HTTP, 257
Hungarian notation, 77

I
Icon property, 135–136
IDE (Integrated Development Environment), 4, 9–10
if ... else statement

code blocks, 101–103
operators, 100–101
selecting code, 103–104, 107–108

297

if ... else statement

In
de

x

25_589555 bindex.qxd 12/30/05 5:06 PM Page 297

if ... else statement (continued)
syntax, 99–100
uses, 97, 103–104

Immediate window, 91–92
increment (++) arithmetic operator, 72
indexes of strings, 74
IndexOf method, 74–75
infrastructure of Web services, 259
inheritance, 25
Insert method, 74
inserting

breakpoints, 86
controls, 41–46
strings, 74
tab pages, 226

installing
C# Express, 5–8
.NET Framework, 7
SQL Server Express, 182

int data type, 73
Integrated Development Environment (IDE), 4, 9–10
IntelliSense, 89–90
interface standards

forms, 126, 128
importance of, 125–126
switchboards, 126

Internet protocols, 257
Internet resources

DotNetJunkies.com, 13, 281
FMS Inc., 281
GotDotNet.com, 13

Internet services
applications, 258
ASP.NET, 258
code, 269
DelayedStockQuote, 269–272
Description, 259
Directory, 259
Discovery, 259
example, 256–257
features, 255
GlobalWeather, 272–276
infrastructure, 259
Internet protocols, 257
locating

through notification, 260
with UDDI Directory, 261–264
on the Web, 264–267

.NET Framework, 258
referencing, 260–264
testing, 269
Wire Format, 259

interpreted programming languages, 23–24
IsMDIContainer property, 144–145
IsNullOrEmpty method, 74
iterations

defined, 97
do statement, 112–114
foreach statement, 111
for statement, 109–110
uses, 109
while statement, 112–114

J
Jet database engine, 208

K
keys (databases), 174

L
languages for programming

Assembler, 23
Basic, 23
C, 23
C# Express, 24
COBOL, 23
compiled, 23–24
FORTRAN, 23
interpreted, 23–24
Pascal, 23

LastIndexOf method, 74
layout properties (forms), 130
Learning How to Program help topics, 11
less than operator (<), 100
less than or equal to (<=) operator, 100
license agreement, 5
ListBox control

clearing, 233–234
loading, 234–237
populating, 209–212
uses, 222, 228

Load event, 26
loading ListBox control, 234–237
Locals window, 90–91

298

if ... else statement (continued)

25_589555 bindex.qxd 12/30/05 5:06 PM Page 298

locating Web services
through notification, 260
with UDDI Directory, 261–264
on the Web, 264–267

logical AND (&&) operator, 101
logical errors, 82
logical OR (||) operator, 101
long data type, 73
loops

defined, 97
do statement, 112–114
foreach statement, 111
for statement, 109–110
uses, 109
while statement, 112–114

loosely coupled, 258

M
Main Editor, 15
MainMenuStrip property, 135
maintaining

stored procedures, 185
tables, 185
views (databases), 185

many-to-many relationships (databases), 174
Margins property, 155
matching strings, 74
MaxSelectionCount property, 240, 242
MDI forms

creating, 146–147
properties, 144–145

MDI (multiple-document interface), 127–128
MDIListWindowsItem property, 145
MDIParent property, 145
memory cache, 196
MenuStrip control, 138–140
methods
Compare, 74
Contains, 74
Copy, 74
defined, 24
GetFiles, 234
getWeatherReport, 273–274
IndexOf, 74–75
Insert, 74
IsNullOrEmpty, 74
LastIndexOf, 74
overloading, 75
PadLeft, 74
PadRight, 74

Remove, 74
Replace, 74
ShowDialog(), 158–160
Split, 74
StartsWith, 74
Substring, 74–76
ToUpper, 74
Trim, 74
TrimEnd, 74
TrimStart, 74

Microsoft Access, 176–178, 182
Microsoft Developer Network (MSDN) Express

Library, 5–7
Microsoft Express series, 4–5
Microsoft SQL Server, 178–179
Microsoft Visual C# Express

differences from C#, 4
features, 24
installing, 5–8
Start page, 7, 9–13

misc properties (forms), 130
modifying

tab pages, 226–227
tables (databases), 188
variables, 90

modulus (%) arithmetic operator, 72
MonthCalendar control

events, 240–241
example, 241–243
MaxSelectionCount property, 240, 242
methods, 240
SelectionStart property, 240
uses, 222–223, 240

moving controls, 141–142
MSDN (Microsoft Developer Network) Express

Library, 5–7
multiple-document interface (MDI), 127–128
multiplication (*) arithmetic operator, 72

N
namespaces

fully qualified namespace, 57–61
how they work, 53–55
Object Browser, 55–58
System, 53
System.Data, 53
System.Drawing, 53
System.Windows.Forms, 53
Using directive, 61–64

299

namespaces

In
de

x

25_589555 bindex.qxd 12/30/05 5:06 PM Page 299

naming
databases, 188
fields (databases), 173
projects, 13–14
variables, 76–77

navigating WebBrowser control, 238–239
.NET Framework

application deployment, 278
Class Library, 51–53
Common Language Runtime (CLR), 51, 53
DLL hell, 52–53
features, 52–53
installing, 7
Web services, 258

New Project dialog box, 13–14
newsgroups, 12
None control, 152
nonproprietary, 258
normalizing data, 175–176
not equal to (!=) operator, 100
notation styles for naming variables, 77
null strings, 74

O
Object Browser

closing, 57
namespaces, 55–58

object data type, 73
one-to-many relationships (databases), 174
one-to-one relationships (databases), 174
OOP (object-oriented programming), 24–25
Open dialog box, 150
OpenFileDialog control, 152, 162–163
operating system level applications, 22
operators

arithmetic operators, 72–73
boolean operators, 100–101
parentheses, 73

OR (||) operator, 101
Output window, 92
overloading methods, 75

P
padding strings, 74
PadLeft method, 74
PadRight method, 74
parameterized stored procedures, 214–216
parentheses () in operations, 73

Pascal programming language, 23
populating
DataGridView control, 213–214
ListBox control, 209–212

primary key, 174
program errors

debugging
break mode, 85–86
breakpoints, 86–87
Call Stack window, 93
Data Visualizers, 94
defined, 82
Edit and Continue feature, 87–89
error list, 82–84
exceptions, 94
executing mode, 85
help, 10
Immediate window, 91–92
IntelliSense, 89–90
Locals window, 90–91
Output window, 92
Quick Console window, 92
stepping through code, 92–93
Watch window, 92

defined, 81
exceptions, 82, 94
reporting, 12
semantic/logical errors, 82
syntax errors, 82

programming
black box, 25
defined, 21
history, 22–23
OOP (object-oriented programming), 24–25
statements, 22
Windows programming, 25–26

programming languages
Assembler, 23
Basic, 23
C, 23
C# Express, 24
COBOL, 23
compiled, 23–24
FORTRAN, 23
interpreted, 23–24
Pascal, 23

programs
business programs, 22
console applications, 10, 30
defined, 22

300

naming

25_589555 bindex.qxd 12/30/05 5:06 PM Page 300

demo programs
Browsing Web Files, 222, 228–238
Date Selection and Display, 222–223, 239–243
progress bars, 224, 243–249
status bars, 224, 243, 249–252

drivers, 22
operating system level, 22
templates, 31–32
utilities, 22
video games, 22
Web services, 258
Windows applications

creating, 10, 31–32
features, 30
files, 39
IDE (Integrated Development Environment), 32–37
Solution Explorer, 37–40

progress bars, 224, 243–249
ProgressBar control

example, 244–250
uses, 243–244 250

project templates, 31–32
projects

creating, 13–14
defined, 16
Hello World, 16–18
naming, 13–14
screen saver project, 10

properties
controls, 138
defined, 24
fields (databases), 173
FontDialog control, 160
forms, 128–130, 135–137
MaxSelectionCount, 240, 242
MDI forms, 144–145
OpenFileDialog control, 162–163
RichTextBox control, 153–157
SaveFileDialog control, 164
SelectionStart, 240
setting, 39–40
Solution Explorer, 38–40

Properties pane
features, 16
Windows applications, 32

publishing applications
BinRelease folder, 277
.NET Framework, 278
tools, 277

Q
Quick Console window, 92
quotes from stock market Web service, 270–272

R
RDO (Remote Data Objects), 207–208
records (databases), 171
references

Solution Explorer, 37
Web services, 260–264

referential integrity, 175
relational model databases, 172
relationships (databases), 174
Remote Data Objects (RDO), 207–208
Remove method, 74
removing

breakpoints, 86
strings, 74

Replace method, 74
replacing strings, 74
Report Services (SQL Server Express), 182
reporting bugs, 12
resizing controls, 141–142
rich text (defined), 149
Rich Text Editor, 152–153, 156–157
RichTextBox control
AcceptsTab property, 155
alignment options, 156–157
AutoWordSelection property, 155
BulletIndent property, 155
Dock property, 153–155
docking, 153–155
Margins property, 155
SelectionAlignment property, 155
SelectionBullets property, 155
uses, 149, 152
WordWrap property, 155
ZoomFactor property, 155, 157

routines, viewing in Call Stack window, 93

S
SaveFileDialog control, 152, 164–165
screen saver project, 10
SDI (single-document interface), 127
searching

string contents, 74
Web services

301

searching

In
de

x

25_589555 bindex.qxd 12/30/05 5:06 PM Page 301

searching (continued)
through notification, 260
with UDDI Directory, 261–264
on the Web, 264–267

second normal form (2NF), 175
SelectAlignment property, 156–157
selecting code with if...else statements,

103–104, 107–108
SelectionAlignment property, 155
SelectionBullets property, 155
selections

boolean operators, 100–101
code blocks, 101–103
defined, 97
if ... else statement, 97, 99–104, 107–108
switch ... case statement, 97, 104–107

SelectionStart property, 240
semantic/logical errors, 82
services

applications, 258
ASP.NET, 258
code, 269
DelayedStockQuote, 270–272
Description, 259
Directory, 259
Discovery, 259
example, 256–257
features, 255
GlobalWeather, 272–276
infrastructure, 259
Internet protocols, 257
locating

through notification, 260
with UDDI Directory, 261–264
on the Web, 264–267

.NET Framework, 258
referencing, 260–264
testing, 269
Wire Format, 259

setting
breakpoints, 86–87
properties, 39–40

short data type, 73
ShowDialog() method, 158–160
ShowEffects property, 160
single-document interface (SDI), 127
SOAP (Simple Object Access Protocol), 257
software (defined), 22
software programs (defined), 22

Solution Explorer
features, 15–16
properties, 38–40
references, 37
viewing files, 37–38
Windows applications, 32, 37–40

solutions, 16
Split method, 74
SplitButton control, 250
SplitContainer control, 222, 228
splitting strings, 74
SQL Server Express

Configuration Manager, 182–183
Database Explorer, 183–185, 196
Database Solutions, 191
default instance, 182
features, 4–5, 181–182
installing, 182
Report Services, 182

SQL Server (Microsoft), 178–179
SqlCommand class (ADO.NET), 209, 212, 214
SqlConnection class (ADO.NET), 209, 212
SqlDataAdapter class (ADO.NET), 209–210
standard data types, 73
standards for naming variables, 77
Start page, 7, 9–13
StartLocation property, 135
StartPosition property, 136
StartsWith method, 74
statements
for, 109–110
const, 80
defined, 22
do, 112–114
finally, 118–119
foreach, 111
if ... else, 97, 99–104, 107–108
switch ... case, 97, 104–107
try ... catch, 116–118
try ... catch ... finally, 119–121
while, 112–114

status bars, 224, 243, 249–252
StatusLabel control, 250
StatusStrip control

example, 249–252
uses, 224, 243

stepping through code, 92–93
stock quotes XML Web service, 269–272
stored procedures, 185, 214–216

302

searching (continued)

25_589555 bindex.qxd 12/30/05 5:06 PM Page 302

string data type, 73
strings

comparing, 74
copying, 74
deleting, 74
empty, 74
indexes, 74
inserting, 74
matching, 74
methods, 73–74
null, 74
padding, 74
replacing, 74
searching contents, 74
splitting, 74
substrings, 74
trimming, 74

Substring method, 74–76
subtraction (-) arithmetic operator, 72
switch ... case statement, 97, 104–107
switchboards

calling, 132–134
creating, 130–134
user interface standards, 126

syntax errors, 82
System namespace, 53
System.Data namespace, 53
System.Drawing namespace, 53
System.IO.Directory class, 234
System.Windows.Forms namespace, 53

T
Tab control, 224–227
tab pages

adding, 226
editing, 226–227
inserting, 226
modifying, 226–227

TableAdapter control, 199
tables (databases)

creating, 188
defined, 171–172
displaying structure, 188–190
editing, 188
foreign key, 174
maintaining, 185
modifying, 188
primary key, 174

structure, 173–174
viewing data, 190–191

TabStrip control, 224
templates, 31–32
testing

forms, 48–49
Web services, 269

Text property, 135–136
TextBox control, 143, 228
third normal form (3NF), 175
Toolbox

features, 16
Windows applications, 32

ToolStripProgressBar control, 250–251
ToolStripStatusLabel control, 250–251
Total .NET Developer Suite (FMS Inc.), 281
ToUpper method, 74
Trim method, 74
TrimEnd method, 74
trimming strings, 74
TrimStart method, 74
try ... catch ... finally statement, 119–121
try ... catch statement, 116–118

U
UDDI Directory, 261–264
UDDI (Universal Description, Discovery, and Integration)

registry, 259
unhandled exceptions, 115–116
upsizing Access databases to SQL Server, 182
user interface standards

forms, 126, 128
importance of, 125–126
switchboards, 126

Using directive, 61–64
utilities

Data Source Configuration Wizard, 196–198
defined, 22

V
variables

assigning, 70–72
Camel notation, 77
converting between variable types, 77–79
data types

standard, 73
strings, 73–74

303

variables

In
de

x

25_589555 bindex.qxd 12/30/05 5:06 PM Page 303

variables (continued)
declaring, 68–70
defined, 67–68
displaying, 89–92
editing, 90
enumerations, 79
Hungarian notation, 77
Immediate window, 91–92
Locals window, 90–91
naming, 76–77
Output window, 92
Watch window, 92

video games, 22
View menu, 152
viewing, database table data, 190–191
viewing files (Solution Explorer), 37–38
views (databases)

creating, 191
maintaining, 185

Visual Basic 2005 Express, 4
Visual C# Express. See C# Express
Visual C++ 2005 Express, 4
Visual J# 2005 Express, 4
Visual Studio .NET 2005, 281
Visual Web Developer 2005 Express, 4, 278–280

W
Watch window, 92
weather Web service, 272–276
Web Developer 2005 Express, 4, 278–280
Web form applications, 29
Web references

adding, 267–268
creating, 260–262, 264

Web services
applications, 258
ASP.NET, 258
code, 269
DelayedStockQuote, 269–272
Description, 259
Directory, 259
Discovery, 259
example, 256–257
features, 255
GlobalWeather, 272–276
infrastructure, 259
Internet protocols, 257

locating
through notification, 260
with UDDI Directory, 261–264
on the Web, 264–267

.NET Framework, 258
referencing, 260–264
testing, 269
Wire Format, 259

Web Services Description Language (WSDL), 259
Web sites

DotNetJunkies.com, 13, 281
FMS Inc., 281
GotDotNet.com, 13

WebBrowser control
clearing, 233–234
displaying files in, 238–239
navigating, 238–239
uses, 222, 228

while statement, 112–114
window style properties (forms), 130
windows

Call Stack window, 93
Immediate window, 91–92
Locals window, 90–91
Output window, 92
Quick Console window, 92
Watch window, 92

Windows applications
creating, 10, 31–32
features, 30
files, 39
IDE (Integrated Development Environment), 32–37
Solution Explorer, 37–40
Windows Application template, 31–32

Windows forms
captions, 40–41
colors, 128
controls

adding, 41–46
aligning, 141–143
BindingNavigator, 199
BindingSource, 199
Button, 143, 228
ColorDialog, 158–160
DataGridView, 199–201, 212–214
DataSet, 199
DateTimePicker, 222–223, 241–243
defined, 28

304

variables (continued)

25_589555 bindex.qxd 12/30/05 5:06 PM Page 304

DropDownButton, 250
FolderBrowserDialog, 222, 228, 232–233
FontDialog, 160–161
inserting, 41–46
ListBox, 209–212, 222, 228, 233–237
MenuStrip, 138–140
MonthCalendar, 222–223, 240–243
moving, 141–142
None, 152
OpenFileDialog, 152, 162–163
ProgressBar, 243–250
properties, 138
purposes of, 137
resizing, 141–142
RichTextBox, 149, 152–157
SaveFileDialog, 152, 164–165
SplitButton, 250
SplitContainer, 222, 228
StatusLabel, 250
StatusStrip, 224, 243, 249–252
Tab, 224–227
TableAdapter, 199
TabStrip, 224
TextBox, 143, 228
ToolStripProgressBar, 250–251
ToolStripStatusLabel, 250–251
WebBrowser, 222, 228, 233–234, 238–239

events
Activate, 26
Close, 26
code, 46–49
Deactivate, 26
defined, 26
Load, 26

MDI forms
creating, 146–147
properties, 144–145

multiple-document interface (MDI), 127–128
properties, 128–130, 135–137

single-document interface (SDI), 127
switchboards

calling, 132–134
creating, 130–134
user interface standards, 126

testing, 48–49
user interface standards, 126, 128

Windows programming, 25–26
Wire Format (Web services), 259
WordWrap property, 155
WSDL (Web Services Description Language), 259

X
XML Web services

applications, 258
ASP.NET, 258
code, 269
DelayedStockQuote, 270–272
Description, 259
Directory, 259
Discovery, 259
example, 256–257
features, 255
GlobalWeather, 272–276
infrastructure, 259
Internet protocols, 257
locating

through notification, 260
with UDDI Directory, 261–264
on the Web, 264–267

.NET Framework, 258
referencing, 260–264
testing, 269
Wire Format, 259

Z
ZoomFactor property, 155–157

305

ZoomFactor property

In
de

x

25_589555 bindex.qxd 12/30/05 5:06 PM Page 305

26_589555 lic.qxd 12/29/05 8:35 PM Page 311

This program was reproduced by Wiley Publishing, Inc. under a special arrangement with Microsoft
Corporation. For this reason, Wiley Publishing, Inc. is responsible for the product warranty. If your
diskette is defective, please return it to Wiley Publishing, Inc., who will arrange for its replacement.
PLEASE DO NOT RETURN IT TO OR CONTACT MICROSOFT CORPORATION FOR SOFTWARE
SUPPORT. This product is provided for free, and no support is provided for by Wiley Publishing, Inc. or
Microsoft Corporation. To the extent of any inconsistencies between this statement and the end user
license agreement which accompanies the program, this statement shall govern.

26_589555 lic.qxd 12/29/05 8:35 PM Page 312

